|
|
|
|
|
|
|
|
|
|
|
"""Tokenization classes for QWen.""" |
|
|
|
import base64 |
|
import logging |
|
import os |
|
import requests |
|
import unicodedata |
|
from typing import Collection, Dict, List, Set, Tuple, Union, Any, Callable, Optional |
|
|
|
import tiktoken |
|
import numpy as np |
|
from PIL import Image |
|
from PIL import ImageFont |
|
from PIL import ImageDraw |
|
from transformers import PreTrainedTokenizer, AddedToken |
|
from transformers.utils import try_to_load_from_cache |
|
|
|
import matplotlib.colors as mcolors |
|
from matplotlib.font_manager import FontProperties |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken", "ttf": "SimSun.ttf"} |
|
FONT_PATH = try_to_load_from_cache("Qwen/Qwen-VL-Chat", "SimSun.ttf") |
|
if FONT_PATH is None: |
|
if not os.path.exists("/mnt/project/LLAVA/Qwen-VL-Chat/SimSun.ttf"): |
|
ttf = requests.get("https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/SimSun.ttf") |
|
open("SimSun.ttf", "wb").write(ttf.content) |
|
FONT_PATH = "/mntnlp/common_base_model/Qwen-VL-Chat/SimSun.ttf" |
|
|
|
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+""" |
|
ENDOFTEXT = "<|endoftext|>" |
|
IMSTART = "<|im_start|>" |
|
IMEND = "<|im_end|>" |
|
|
|
|
|
|
|
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205))) |
|
SPECIAL_TOKENS = ( |
|
ENDOFTEXT, |
|
IMSTART, |
|
IMEND, |
|
) + EXTRAS |
|
IMG_TOKEN_SPAN = 256 |
|
|
|
|
|
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]: |
|
with open(tiktoken_bpe_file, "rb") as f: |
|
contents = f.read() |
|
return { |
|
base64.b64decode(token): int(rank) |
|
for token, rank in (line.split() for line in contents.splitlines() if line) |
|
} |
|
|
|
def _list_find( |
|
input_list: List[Any], |
|
candidates: Tuple[Any], |
|
start: int = 0, |
|
): |
|
for i in range(start, len(input_list)): |
|
if input_list[i] in candidates: |
|
return i |
|
return -1 |
|
|
|
def _replace_closed_tag( |
|
input_tokens: List[Any], |
|
start_tags: Union[Any, Tuple[Any]], |
|
end_tags: Union[Any, Tuple[Any]], |
|
inclusive_replace_func: Callable, |
|
exclusive_replace_func: Callable = lambda x: x, |
|
): |
|
if isinstance(start_tags, (str, int)): |
|
start_tags = (start_tags,) |
|
if isinstance(end_tags, (str, int)): |
|
end_tags = (end_tags,) |
|
assert len(start_tags) == len(end_tags) |
|
|
|
output_tokens = [] |
|
end = 0 |
|
while True: |
|
start = _list_find(input_tokens, start_tags, end) |
|
if start == -1: |
|
break |
|
output_tokens.extend(exclusive_replace_func(input_tokens[end : start])) |
|
tag_idx = start_tags.index(input_tokens[start]) |
|
end = _list_find(input_tokens, (end_tags[tag_idx],), start) |
|
if end == -1: |
|
raise ValueError("Unclosed image token") |
|
output_tokens.extend(inclusive_replace_func(input_tokens[start : end + 1])) |
|
end += 1 |
|
output_tokens.extend(exclusive_replace_func(input_tokens[end : ])) |
|
return output_tokens |
|
|
|
class QWenTokenizer(PreTrainedTokenizer): |
|
"""QWen tokenizer.""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
|
|
def __init__( |
|
self, |
|
vocab_file, |
|
errors="replace", |
|
image_start_tag='<img>', |
|
image_end_tag='</img>', |
|
image_pad_tag='<imgpad>', |
|
ref_start_tag='<ref>', |
|
ref_end_tag='</ref>', |
|
box_start_tag='<box>', |
|
box_end_tag='</box>', |
|
quad_start_tag='<quad>', |
|
quad_end_tag='</quad>', |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
self.image_start_tag = image_start_tag |
|
self.image_end_tag = image_end_tag |
|
self.image_pad_tag = image_pad_tag |
|
self.ref_start_tag = ref_start_tag |
|
self.ref_end_tag = ref_end_tag |
|
self.box_start_tag = box_start_tag |
|
self.box_end_tag = box_end_tag |
|
self.quad_start_tag = quad_start_tag |
|
self.quad_end_tag = quad_end_tag |
|
self.IMAGE_ST = ( |
|
ref_start_tag, ref_end_tag, |
|
box_start_tag, box_end_tag, |
|
quad_start_tag, quad_end_tag, |
|
image_start_tag, image_end_tag, |
|
image_pad_tag |
|
) |
|
|
|
self.errors = errors |
|
|
|
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) |
|
self.special_tokens = { |
|
token: index |
|
for index, token in enumerate( |
|
SPECIAL_TOKENS + self.IMAGE_ST, start=len(self.mergeable_ranks) |
|
) |
|
} |
|
self.img_start_id = self.special_tokens[self.image_start_tag] |
|
self.img_end_id = self.special_tokens[self.image_end_tag] |
|
self.img_pad_id = self.special_tokens[self.image_pad_tag] |
|
self.ref_start_id = self.special_tokens[self.ref_start_tag] |
|
self.ref_end_id = self.special_tokens[self.ref_end_tag] |
|
self.box_start_id = self.special_tokens[self.box_start_tag] |
|
self.box_end_id = self.special_tokens[self.box_end_tag] |
|
self.quad_start_id = self.special_tokens[self.quad_start_tag] |
|
self.quad_end_id = self.special_tokens[self.quad_end_tag] |
|
|
|
enc = tiktoken.Encoding( |
|
"Qwen", |
|
pat_str=PAT_STR, |
|
mergeable_ranks=self.mergeable_ranks, |
|
special_tokens=self.special_tokens, |
|
) |
|
assert ( |
|
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab |
|
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding" |
|
|
|
self.decoder = { |
|
v: k for k, v in self.mergeable_ranks.items() |
|
} |
|
self.decoder.update({v: k for k, v in self.special_tokens.items()}) |
|
|
|
self.tokenizer = enc |
|
|
|
self.eod_id = self.tokenizer.eot_token |
|
self.im_start_id = self.special_tokens[IMSTART] |
|
self.im_end_id = self.special_tokens[IMEND] |
|
|
|
def __getstate__(self): |
|
|
|
state = self.__dict__.copy() |
|
del state['tokenizer'] |
|
return state |
|
|
|
def __setstate__(self, state): |
|
|
|
self.__dict__.update(state) |
|
enc = tiktoken.Encoding( |
|
"Qwen", |
|
pat_str=PAT_STR, |
|
mergeable_ranks=self.mergeable_ranks, |
|
special_tokens=self.special_tokens, |
|
) |
|
self.tokenizer = enc |
|
|
|
|
|
def __len__(self) -> int: |
|
return self.tokenizer.n_vocab |
|
|
|
def get_vocab(self) -> Dict[bytes, int]: |
|
return self.mergeable_ranks |
|
|
|
def convert_tokens_to_ids( |
|
self, tokens: Union[bytes, str, List[Union[bytes, str]]] |
|
) -> List[int]: |
|
ids = [] |
|
if isinstance(tokens, (str, bytes)): |
|
if tokens in self.special_tokens: |
|
return self.special_tokens[tokens] |
|
else: |
|
return self.mergeable_ranks.get(tokens) |
|
for token in tokens: |
|
if token in self.special_tokens: |
|
ids.append(self.special_tokens[token]) |
|
else: |
|
ids.append(self.mergeable_ranks.get(token)) |
|
return ids |
|
|
|
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int: |
|
if not special_tokens and new_tokens: |
|
raise ValueError('Adding regular tokens is not supported') |
|
for token in new_tokens: |
|
surface_form = token.content if isinstance(token, AddedToken) else token |
|
if surface_form not in SPECIAL_TOKENS + self.IMAGE_ST: |
|
raise ValueError('Adding unknown special tokens is not supported') |
|
return 0 |
|
|
|
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]: |
|
""" |
|
Save only the vocabulary of the tokenizer (vocabulary). |
|
|
|
Returns: |
|
`Tuple(str)`: Paths to the files saved. |
|
""" |
|
file_path = os.path.join(save_directory, "qwen.tiktoken") |
|
with open(file_path, "w", encoding="utf8") as w: |
|
for k, v in self.mergeable_ranks.items(): |
|
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n" |
|
w.write(line) |
|
return (file_path,) |
|
|
|
def tokenize( |
|
self, |
|
text: str, |
|
allowed_special: Union[Set, str] = "all", |
|
disallowed_special: Union[Collection, str] = (), |
|
**kwargs, |
|
) -> List[Union[bytes, str]]: |
|
""" |
|
Converts a string in a sequence of tokens. |
|
|
|
Args: |
|
text (`str`): |
|
The sequence to be encoded. |
|
allowed_special (`Literal["all"]` or `set`): |
|
The surface forms of the tokens to be encoded as special tokens in regular texts. |
|
Default to "all". |
|
disallowed_special (`Literal["all"]` or `Collection`): |
|
The surface forms of the tokens that should not be in regular texts and trigger errors. |
|
Default to an empty tuple. |
|
|
|
kwargs (additional keyword arguments, *optional*): |
|
Will be passed to the underlying model specific encode method. |
|
|
|
Returns: |
|
`List[bytes|str]`: The list of tokens. |
|
""" |
|
tokens = [] |
|
text = unicodedata.normalize("NFC", text) |
|
|
|
|
|
for t in self.tokenizer.encode( |
|
text, allowed_special=allowed_special, disallowed_special=disallowed_special |
|
): |
|
tokens.append(self.decoder[t]) |
|
|
|
def _encode_imgurl(img_tokens): |
|
assert img_tokens[0] == self.image_start_tag and img_tokens[-1] == self.image_end_tag |
|
img_tokens = img_tokens[1:-1] |
|
img_url = b''.join(img_tokens) |
|
out_img_tokens = list(map(self.decoder.get, img_url)) |
|
if len(out_img_tokens) > IMG_TOKEN_SPAN: |
|
raise ValueError("The content in {}..{} is too long".format( |
|
self.image_start_tag, self.image_end_tag)) |
|
out_img_tokens.extend([self.image_pad_tag] * (IMG_TOKEN_SPAN - len(out_img_tokens))) |
|
out_img_tokens = [self.image_start_tag] + out_img_tokens + [self.image_end_tag] |
|
return out_img_tokens |
|
|
|
return _replace_closed_tag(tokens, self.image_start_tag, self.image_end_tag, _encode_imgurl) |
|
|
|
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str: |
|
""" |
|
Converts a sequence of tokens in a single string. |
|
""" |
|
text = "" |
|
temp = b"" |
|
for t in tokens: |
|
if isinstance(t, str): |
|
if temp: |
|
text += temp.decode("utf-8", errors=self.errors) |
|
temp = b"" |
|
text += t |
|
elif isinstance(t, bytes): |
|
temp += t |
|
else: |
|
raise TypeError("token should only be of type types or str") |
|
if temp: |
|
text += temp.decode("utf-8", errors=self.errors) |
|
return text |
|
|
|
@property |
|
def vocab_size(self): |
|
return self.tokenizer.n_vocab |
|
|
|
def _convert_id_to_token(self, index: int) -> Union[bytes, str]: |
|
"""Converts an id to a token, special tokens included""" |
|
if index in self.decoder: |
|
return self.decoder[index] |
|
raise ValueError("unknown ids") |
|
|
|
def _convert_token_to_id(self, token: Union[bytes, str]) -> int: |
|
"""Converts a token to an id using the vocab, special tokens included""" |
|
if token in self.special_tokens: |
|
return self.special_tokens[token] |
|
if token in self.mergeable_ranks: |
|
return self.mergeable_ranks[token] |
|
raise ValueError("unknown token") |
|
|
|
def _tokenize(self, text: str, **kwargs): |
|
""" |
|
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based |
|
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces). |
|
|
|
Do NOT take care of added tokens. |
|
""" |
|
raise NotImplementedError |
|
|
|
def _decode( |
|
self, |
|
token_ids: Union[int, List[int]], |
|
skip_special_tokens: bool = False, |
|
errors: str = None, |
|
**kwargs, |
|
) -> str: |
|
if isinstance(token_ids, int): |
|
token_ids = [token_ids] |
|
|
|
def _decode_imgurl(img_token_ids): |
|
assert img_token_ids[0] == self.img_start_id and img_token_ids[-1] == self.img_end_id |
|
img_token_ids = img_token_ids[1:-1] |
|
img_token_ids = img_token_ids[ : img_token_ids.index(self.img_pad_id)] |
|
img_url = bytes(img_token_ids).decode('utf-8') |
|
return [self.img_start_id] + self.tokenizer.encode(img_url) + [self.img_end_id] |
|
|
|
token_ids = _replace_closed_tag(token_ids, self.img_start_id, self.img_end_id, _decode_imgurl) |
|
|
|
if skip_special_tokens: |
|
token_ids = [i for i in token_ids if i < self.eod_id] |
|
return self.tokenizer.decode(token_ids, errors=errors or self.errors) |
|
|
|
def to_list_format(self, text: str): |
|
text = unicodedata.normalize("NFC", text) |
|
token_ids = self.tokenizer.encode( |
|
text, allowed_special=set(self.IMAGE_ST + (ENDOFTEXT,))) |
|
|
|
def _encode_vl_info(tokens): |
|
if len(tokens) == 0: |
|
return [] |
|
if tokens[0] == self.img_start_id and tokens[-1] == self.img_end_id: |
|
key = 'image' |
|
elif tokens[0] == self.ref_start_id and tokens[-1] == self.ref_end_id: |
|
key = 'ref' |
|
elif tokens[0] == self.box_start_id and tokens[-1] == self.box_end_id: |
|
key = 'box' |
|
elif tokens[0] == self.quad_start_id and tokens[-1] == self.quad_end_id: |
|
key = 'quad' |
|
else: |
|
_tobytes = lambda x: x.encode('utf-8') if isinstance(x, str) else x |
|
return [{'text': b''.join(map(_tobytes, map(self.decoder.get, tokens))).decode('utf-8')}] |
|
_tobytes = lambda x: x.encode('utf-8') if isinstance(x, str) else x |
|
val = b''.join(map(_tobytes, map(self.decoder.get, tokens[1:-1]))).decode('utf-8') |
|
return [{key: val}] |
|
|
|
return _replace_closed_tag( |
|
token_ids, |
|
(self.img_start_id, self.ref_start_id, self.box_start_id, self.quad_start_id), |
|
(self.img_end_id, self.ref_end_id, self.box_end_id, self.quad_end_id), |
|
_encode_vl_info, |
|
_encode_vl_info, |
|
) |
|
|
|
def from_list_format(self, list_format: List[Dict]): |
|
text = '' |
|
num_images = 0 |
|
for ele in list_format: |
|
if 'image' in ele: |
|
num_images += 1 |
|
text += f'Picture {num_images}:' |
|
text += self.image_start_tag + ele['image'] + self.image_end_tag |
|
text += '\n' |
|
elif 'text' in ele: |
|
text += ele['text'] |
|
elif 'box' in ele: |
|
if 'ref' in ele: |
|
text += self.ref_start_tag + ele['ref'] + self.ref_end_tag |
|
for box in ele['box']: |
|
text += self.box_start_tag + '(%d,%d),(%d,%d)' % (box[0], box[1], box[2], box[3]) + self.box_end_tag |
|
else: |
|
raise ValueError("Unsupport element: " + str(ele)) |
|
return text |
|
|
|
def _fetch_latest_picture(self, response, history): |
|
if history is None: |
|
history = [] |
|
_history = history + [(response, None)] |
|
for q, r in _history[::-1]: |
|
for ele in self.to_list_format(q)[::-1]: |
|
if 'image' in ele: |
|
return ele['image'] |
|
return None |
|
|
|
def _fetch_all_box_with_ref(self, text): |
|
list_format = self.to_list_format(text) |
|
output = [] |
|
for i, ele in enumerate(list_format): |
|
if 'box' in ele: |
|
bbox = tuple(map(int, ele['box'].replace('(', '').replace(')', '').split(','))) |
|
assert len(bbox) == 4 |
|
output.append({'box': bbox}) |
|
if i > 0 and 'ref' in list_format[i-1]: |
|
output[-1]['ref'] = list_format[i-1]['ref'].strip() |
|
return output |
|
|
|
def draw_bbox_on_latest_picture( |
|
self, |
|
response, |
|
history=None, |
|
) -> Optional[Image.Image]: |
|
image = self._fetch_latest_picture(response, history) |
|
if image is None: |
|
return None |
|
if image.startswith("http://") or image.startswith("https://"): |
|
image = Image.open(requests.get(image, stream=True).raw).convert("RGB") |
|
h, w = image.height, image.width |
|
else: |
|
image = np.asarray(Image.open(image).convert("RGB")) |
|
h, w = image.shape[0], image.shape[1] |
|
visualizer = Visualizer(image) |
|
|
|
boxes = self._fetch_all_box_with_ref(response) |
|
if not boxes: |
|
return None |
|
color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()]) |
|
for box in boxes: |
|
if 'ref' in box: |
|
color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()]) |
|
x1, y1, x2, y2 = box['box'] |
|
x1, y1, x2, y2 = (int(x1 / 1000 * w), int(y1 / 1000 * h), int(x2 / 1000 * w), int(y2 / 1000 * h)) |
|
visualizer.draw_box((x1, y1, x2, y2), alpha=1, edge_color=color) |
|
if 'ref' in box: |
|
visualizer.draw_text(box['ref'], (x1, y1), color=color, horizontal_alignment="left") |
|
return visualizer.output |
|
|
|
|
|
import colorsys |
|
import logging |
|
import math |
|
import numpy as np |
|
import matplotlib as mpl |
|
import matplotlib.colors as mplc |
|
import matplotlib.figure as mplfigure |
|
import torch |
|
from matplotlib.backends.backend_agg import FigureCanvasAgg |
|
from PIL import Image |
|
import random |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class VisImage: |
|
def __init__(self, img, scale=1.0): |
|
self.img = img |
|
self.scale = scale |
|
self.width, self.height = img.shape[1], img.shape[0] |
|
self._setup_figure(img) |
|
|
|
def _setup_figure(self, img): |
|
fig = mplfigure.Figure(frameon=False) |
|
self.dpi = fig.get_dpi() |
|
|
|
|
|
fig.set_size_inches( |
|
(self.width * self.scale + 1e-2) / self.dpi, |
|
(self.height * self.scale + 1e-2) / self.dpi, |
|
) |
|
self.canvas = FigureCanvasAgg(fig) |
|
|
|
ax = fig.add_axes([0.0, 0.0, 1.0, 1.0]) |
|
ax.axis("off") |
|
self.fig = fig |
|
self.ax = ax |
|
self.reset_image(img) |
|
|
|
def reset_image(self, img): |
|
img = img.astype("uint8") |
|
self.ax.imshow(img, extent=(0, self.width, self.height, 0), interpolation="nearest") |
|
|
|
def save(self, filepath): |
|
self.fig.savefig(filepath) |
|
|
|
def get_image(self): |
|
canvas = self.canvas |
|
s, (width, height) = canvas.print_to_buffer() |
|
|
|
buffer = np.frombuffer(s, dtype="uint8") |
|
|
|
img_rgba = buffer.reshape(height, width, 4) |
|
rgb, alpha = np.split(img_rgba, [3], axis=2) |
|
return rgb.astype("uint8") |
|
|
|
|
|
class Visualizer: |
|
def __init__(self, img_rgb, metadata=None, scale=1.0): |
|
self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8) |
|
self.font_path = FONT_PATH |
|
self.output = VisImage(self.img, scale=scale) |
|
self.cpu_device = torch.device("cpu") |
|
|
|
|
|
self._default_font_size = max( |
|
np.sqrt(self.output.height * self.output.width) // 30, 15 // scale |
|
) |
|
|
|
def draw_text( |
|
self, |
|
text, |
|
position, |
|
*, |
|
font_size=None, |
|
color="g", |
|
horizontal_alignment="center", |
|
rotation=0, |
|
): |
|
if not font_size: |
|
font_size = self._default_font_size |
|
|
|
|
|
color = np.maximum(list(mplc.to_rgb(color)), 0.2) |
|
color[np.argmax(color)] = max(0.8, np.max(color)) |
|
|
|
x, y = position |
|
self.output.ax.text( |
|
x, |
|
y, |
|
text, |
|
size=font_size * self.output.scale, |
|
fontproperties=FontProperties(fname=self.font_path), |
|
bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"}, |
|
verticalalignment="top", |
|
horizontalalignment=horizontal_alignment, |
|
color=color, |
|
zorder=10, |
|
rotation=rotation, |
|
) |
|
return self.output |
|
|
|
def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"): |
|
|
|
x0, y0, x1, y1 = box_coord |
|
width = x1 - x0 |
|
height = y1 - y0 |
|
|
|
linewidth = max(self._default_font_size / 4, 1) |
|
|
|
self.output.ax.add_patch( |
|
mpl.patches.Rectangle( |
|
(x0, y0), |
|
width, |
|
height, |
|
fill=False, |
|
edgecolor=edge_color, |
|
linewidth=linewidth * self.output.scale, |
|
alpha=alpha, |
|
linestyle=line_style, |
|
) |
|
) |
|
return self.output |
|
|
|
def get_output(self): |
|
|
|
return self.output |
|
|