--- license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: nlpcw_bert-base-uncased-abbr results: [] --- # nlpcw_bert-base-uncased-abbr This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2675 - Precision: 0.9390 - Recall: 0.9349 - F1: 0.9369 - Accuracy: 0.9317 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.6325 | 1.0 | 67 | 0.2629 | 0.9036 | 0.9090 | 0.9063 | 0.9043 | | 0.3169 | 2.0 | 134 | 0.2297 | 0.9309 | 0.9137 | 0.9223 | 0.9182 | | 0.1994 | 3.0 | 201 | 0.2282 | 0.9310 | 0.9193 | 0.9251 | 0.9223 | | 0.17 | 4.0 | 268 | 0.2193 | 0.9366 | 0.9286 | 0.9326 | 0.9278 | | 0.1457 | 5.0 | 335 | 0.2350 | 0.9395 | 0.9373 | 0.9384 | 0.9331 | | 0.1086 | 6.0 | 402 | 0.2435 | 0.9418 | 0.9340 | 0.9379 | 0.9331 | | 0.0908 | 7.0 | 469 | 0.2537 | 0.9357 | 0.9283 | 0.9319 | 0.9270 | | 0.0791 | 8.0 | 536 | 0.2675 | 0.9390 | 0.9349 | 0.9369 | 0.9317 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1