File size: 1,475 Bytes
cc8fdd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import torch
import safetensors.torch
from transformers import T5Tokenizer, T5EncoderModel
#https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.2/blob/main/t2i/model/pytorch_model_ema.pt
input_diffusion = "pytorch_model_ema.pt"
#https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.2/tree/main/t2i/clip_text_encoder
input_bert = "./clip_text_encoder/pytorch_model.bin"
#https://huggingface.co/stabilityai/sdxl-vae/blob/main/sdxl_vae.safetensors
# or
#https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/blob/main/sdxl_vae.safetensors
input_vae = "sdxl_vae.safetensors"
output = "hunyuan_dit_1.2.safetensors"
bert_sd = torch.load(input_bert, weights_only=True)
mt5 = T5EncoderModel.from_pretrained("google/mt5-xl")
tokenizer = T5Tokenizer.from_pretrained("google/mt5-xl")
sp_model = torch.ByteTensor(list(tokenizer.sp_model.serialized_model_proto()))
t5_sd = mt5.state_dict()
out_sd = {}
out_sd["text_encoders.mt5xl.spiece_model"] = sp_model
for k in t5_sd:
out_sd["text_encoders.mt5xl.transformer.{}".format(k)] = t5_sd[k].half()
for k in bert_sd:
if not k.startswith("visual."):
out_sd["text_encoders.hydit_clip.transformer.{}".format(k)] = bert_sd[k].half()
hydit = torch.load(input_diffusion, weights_only=True)
for k in hydit:
out_sd["model.{}".format(k)] = hydit[k].half()
vae_sd = safetensors.torch.load_file(input_vae)
for k in vae_sd:
out_sd["vae.{}".format(k)] = vae_sd[k].half()
safetensors.torch.save_file(out_sd, output)
|