--- license: mit tags: - generated_from_trainer datasets: - bc2gm_corpus metrics: - precision - recall - f1 - accuracy model-index: - name: bc2gm_corpus-Bio_ClinicalBERT-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: bc2gm_corpus type: bc2gm_corpus args: bc2gm_corpus metrics: - name: Precision type: precision value: 0.7853881278538812 - name: Recall type: recall value: 0.8158102766798419 - name: F1 type: f1 value: 0.8003101977510663 - name: Accuracy type: accuracy value: 0.9758965601366187 --- # bc2gm_corpus-Bio_ClinicalBERT-finetuned-ner This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the bc2gm_corpus dataset. It achieves the following results on the evaluation set: - Loss: 0.1505 - Precision: 0.7854 - Recall: 0.8158 - F1: 0.8003 - Accuracy: 0.9759 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0981 | 1.0 | 782 | 0.0712 | 0.7228 | 0.7948 | 0.7571 | 0.9724 | | 0.0509 | 2.0 | 1564 | 0.0687 | 0.7472 | 0.8199 | 0.7818 | 0.9746 | | 0.0121 | 3.0 | 2346 | 0.0740 | 0.7725 | 0.8011 | 0.7866 | 0.9747 | | 0.0001 | 4.0 | 3128 | 0.1009 | 0.7618 | 0.8251 | 0.7922 | 0.9741 | | 0.0042 | 5.0 | 3910 | 0.1106 | 0.7757 | 0.8185 | 0.7965 | 0.9754 | | 0.0015 | 6.0 | 4692 | 0.1182 | 0.7812 | 0.8111 | 0.7958 | 0.9758 | | 0.0001 | 7.0 | 5474 | 0.1283 | 0.7693 | 0.8275 | 0.7973 | 0.9753 | | 0.0072 | 8.0 | 6256 | 0.1376 | 0.7863 | 0.8158 | 0.8008 | 0.9762 | | 0.0045 | 9.0 | 7038 | 0.1468 | 0.7856 | 0.8180 | 0.8015 | 0.9761 | | 0.0 | 10.0 | 7820 | 0.1505 | 0.7854 | 0.8158 | 0.8003 | 0.9759 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1