--- language: - de license: apache-2.0 base_model: openai/whisper-tiny tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 metrics: - wer model-index: - name: Whisper Tiny CV de results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 de 5% type: mozilla-foundation/common_voice_16_0 config: de split: None args: 'config: de, split: test' metrics: - name: Wer type: wer value: 72.91819291819291 --- # Whisper Tiny CV de This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 de 5% dataset. It achieves the following results on the evaluation set: - Loss: 0.7117 - Wer: 72.9182 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.35e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.6076 | 0.2252 | 250 | 0.8347 | 76.3126 | | 0.5955 | 0.4505 | 500 | 0.7893 | 79.1697 | | 0.5179 | 0.6757 | 750 | 0.7593 | 82.1978 | | 0.5189 | 0.9009 | 1000 | 0.7370 | 73.0159 | | 0.3644 | 1.1261 | 1250 | 0.7254 | 84.1270 | | 0.394 | 1.3514 | 1500 | 0.7183 | 73.4066 | | 0.3672 | 1.5766 | 1750 | 0.7152 | 73.1136 | | 0.3751 | 1.8018 | 2000 | 0.7117 | 72.9182 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1