--- base_model: openai/whisper-tiny license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: whisper-tinyfinacial2 results: [] --- # whisper-tinyfinacial2 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8030 - Wer: 77.5281 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.35e-05 - train_batch_size: 16 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 600 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | No log | 4.3478 | 100 | 0.7238 | 66.2921 | | No log | 8.6957 | 200 | 0.6535 | 66.2921 | | No log | 13.0435 | 300 | 0.7427 | 71.3483 | | No log | 17.3913 | 400 | 0.7814 | 78.0899 | | 0.3492 | 21.7391 | 500 | 0.7969 | 77.5281 | | 0.3492 | 26.0870 | 600 | 0.8030 | 77.5281 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1