ppo-LunarLander-v2 / config.json
correll's picture
Upload PPO LunarLander-v2 trained agent
3b44d9f
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79aefc5a5090>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79aefc5a5120>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79aefc5a51b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79aefc5a5240>", "_build": "<function ActorCriticPolicy._build at 0x79aefc5a52d0>", "forward": "<function ActorCriticPolicy.forward at 0x79aefc5a5360>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79aefc5a53f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79aefc5a5480>", "_predict": "<function ActorCriticPolicy._predict at 0x79aefc5a5510>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79aefc5a55a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79aefc5a5630>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79aefc5a56c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79aefc539080>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700480888164252165, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGCQPr6jpaA/iK7Nvl+M+L7lPT6+S68nvgAAAAAAAAAApvSavW+aZD0F1+W8YhFDvgR+6LwZZ7u8AAAAAAAAAABNmRw+qUUtvKPZ67pjM+27G0CdvQdMNT0AAIA/AAAAADPH3Tsxt5Y/EQnFO/XlEL/YXeA8ljr8vAAAAAAAAAAAU3UMPvx+tj4mmoS9GsKdvrN/Tz32B5k7AAAAAAAAAACas6E8XMi3PyJqnD6+m/E9w6x1O0uj1T0AAAAAAAAAAOvSrb4xYVg/coXqPdL/474KjFi+s3QwPgAAAAAAAAAAM3TGPMMBHLoj+4S2Xsu9sRwngDrxqaA1AACAPwAAgD+N8wE+7PSMP4QDRj6nrNS+UoMTPp+fxbwAAAAAAAAAAICqMb70AaG8Lkeru1MmTLpAMg4+QtAeOwAAgD8AAIA/zfjlvIzZzj4h3qm9E9O5vnLyiL22fca8AAAAAAAAAADmSLC9T2RPvPcOJLxC9s88XdXLPcp9qr0AAIA/AACAP815prwPBB4+pbTLvW9Th74DHx69AvJdPAAAAAAAAAAAIBYUPtx7LrxaFls7nieCuQfZob0Uj5e6AACAPwAAgD+t8gy+3BtHPqVpET5d33C+AkRHPGJaersAAAAAAAAAABOIGj5PdzC83vaGOyJ+ibm0qZi9ogqyugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHM1Ik/r0J6MAWyUS+GMAXSUR0CfBF2Qnx8VdX2UKGgGR0By+c2Hck+paAdL4WgIR0CfBPwnYxtYdX2UKGgGR0BuxPSQYDT0aAdL7mgIR0CfBYfTkQwsdX2UKGgGR0BxAwdtEXtTaAdNFgFoCEdAnwY4vBacJHV9lChoBkdAcT80aZQYUGgHS/toCEdAnwhETHsC1nV9lChoBkdAbSfv8ZUDMmgHS+RoCEdAnwjIkVvddnV9lChoBkdAcEr3wTdtVWgHS9VoCEdAnwliSeRPoHV9lChoBkdAcu1fg75mAmgHS9xoCEdAnwmGg8KXwHV9lChoBkdAcI4rO7g882gHS/toCEdAnwmptWMjvHV9lChoBkdAcp9wob4rSWgHS/5oCEdAnwo2tZFG5XV9lChoBkdAY0EbkwN9Y2gHTegDaAhHQJ8K5jurp7l1fZQoaAZHQHGucaOxSpBoB0v7aAhHQJ8LXOt4iX91fZQoaAZHQHBu4YekpJBoB0vjaAhHQJ8LdXIU8FJ1fZQoaAZHQHGZrXUYsNFoB0vIaAhHQJ8Ldcv/R3N1fZQoaAZHQHI77HdXT3JoB00AAWgIR0CfDE0BwMpgdX2UKGgGR0BygXgjyFwlaAdNJAFoCEdAnw3/+CK77XV9lChoBkdAYfiAIY3vQWgHTegDaAhHQJ8QFqgyuZF1fZQoaAZHQHDS80YTCchoB0vIaAhHQJ8QvH6uW8h1fZQoaAZHQG+wy2phnapoB0vnaAhHQJ8RVnezlcR1fZQoaAZHQHMmJpeu3c5oB0vnaAhHQJ8TFJoTPB11fZQoaAZHQHDD5v1lGw1oB0vqaAhHQJ8TFIRRMvh1fZQoaAZHQHGhaL4vexhoB0v5aAhHQJ8TjQC0WuZ1fZQoaAZHQHE5NZvDP4VoB0vZaAhHQJ8TtpdrwfB1fZQoaAZHQHHP2XgLqlhoB0v6aAhHQJ8UYU/OdG11fZQoaAZHQHFN/s/pt79oB0vqaAhHQJ8U0qqfe1t1fZQoaAZHQHIL2k30f5loB0voaAhHQJ8U2RkmQbN1fZQoaAZHQHHrXyEtdzJoB0vVaAhHQJ8U+Ef1Yhd1fZQoaAZHQHG29LpRoAZoB00YAWgIR0CfGeAWBSUDdX2UKGgGR0BxrDaakRBeaAdL6mgIR0CfGjjua4MGdX2UKGgGR0BxUSlzltCRaAdL22gIR0CfGkGHYYixdX2UKGgGR0BwXTerMkhSaAdL+WgIR0CfHGtEofCAdX2UKGgGR0BwAIdvKlpHaAdL5WgIR0CfHVisXBP9dX2UKGgGR0BxOtW7voeQaAdL6mgIR0CfHZgPVd5ZdX2UKGgGR0ByTvRnezlcaAdL3GgIR0CfHx8hs67vdX2UKGgGR0BvGSCpWFN+aAdL62gIR0CfH08eCCjDdX2UKGgGR0Bx08mNR3vAaAdL62gIR0CfH+9JSR8udX2UKGgGR0BwWd1PnB+GaAdNMAFoCEdAnyHAvpQk5nV9lChoBkdAcHMw97ngYWgHTS4BaAhHQJ8jfDjzZpV1fZQoaAZHQHHZA6ySmqJoB0vcaAhHQJ8ktvrGBFx1fZQoaAZHQHJXg6uGKyhoB0voaAhHQJ8k5Kyv9tN1fZQoaAZHQHJ0mWdEsrdoB016AWgIR0CfJQBClabGdX2UKGgGR0BudMiUxEfDaAdL5mgIR0CfJRl0HQhPdX2UKGgGR0BxJoIv8IiUaAdL2mgIR0CfJiW6K+BZdX2UKGgGR0Bw87y+Yc//aAdL2mgIR0CfJuqAz544dX2UKGgGR0Bv53LeQ+2WaAdL/GgIR0CfJ+urIYFadX2UKGgGR0BxONBVuJk5aAdL/mgIR0CfKU8K5TZQdX2UKGgGR0BkR/eUILPVaAdN6ANoCEdAnyom606YFHV9lChoBkdAcEDPHktEomgHTSoBaAhHQJ8rHd69kBl1fZQoaAZHQHAY+cx0uDloB0vbaAhHQJ8rPU+cH4Z1fZQoaAZHQHG5e2NNrTJoB00JAWgIR0CfK7My8BdVdX2UKGgGR0BxGm9sabWmaAdNOQFoCEdAnywbRBu4w3V9lChoBkdAZATLJ0W/J2gHTegDaAhHQJ8tnBnBciZ1fZQoaAZHQG85sS9M9KVoB0vvaAhHQJ8tsuFpPAR1fZQoaAZHQHBEldLQHA1oB0vzaAhHQJ8tvKZDzAh1fZQoaAZHQG85i6pYLb5oB0vZaAhHQJ8uDAVO9Fp1fZQoaAZHQHMOa6vq1PZoB00MAWgIR0CfLk5nUUfxdX2UKGgGR0BgBo4n4O+aaAdN6ANoCEdAny52lMyrP3V9lChoBkdAcZQ6u4gA62gHS9RoCEdAny6cP8Q7LnV9lChoBkdAcbwm1pj+aWgHS/doCEdAnzBjUZvUBnV9lChoBkdAczNLZSNwSGgHS9JoCEdAnzBfuCwr2HV9lChoBkdAcWGRJmNBGGgHS/loCEdAnzJLcj7hvXV9lChoBkdAcru0/GEPD2gHS+ZoCEdAnzKW1+iJwnV9lChoBkdAcgb1w5vLo2gHS+5oCEdAnzK9eyAxz3V9lChoBkdAbqkJ2MbWE2gHS+JoCEdAnzLabWmP53V9lChoBkdAXXlx2jfvW2gHTegDaAhHQJ8zAuSOinJ1fZQoaAZHQHCtQmiQDFJoB0vdaAhHQJ8zBKHwgDB1fZQoaAZHQHCLZSzgMttoB0vVaAhHQJ80ZE9dNWV1fZQoaAZHQHGls052hZhoB0vraAhHQJ80f/GVAzJ1fZQoaAZHQHENHJHRTjxoB0v1aAhHQJ80qRvFWGR1fZQoaAZHQG2uSJ0nw5NoB0vkaAhHQJ81B8pkPMB1fZQoaAZHQHB091hb4ahoB0vpaAhHQJ81A2MsH0N1fZQoaAZHQHL7oybhFVloB00EAWgIR0CfNRn13+uOdX2UKGgGR0ByqMSyt3fRaAdL02gIR0CfNiqNZNfxdX2UKGgGR0BxwE8gZCOWaAdL+GgIR0CfNxvTPSlWdX2UKGgGR0BxRIfnwG4aaAdL2mgIR0CfOABHCoCNdX2UKGgGR0BweXw2ETQFaAdL22gIR0CfOE7F85S4dX2UKGgGR0BwZyFuejEfaAdL22gIR0CfOLeBQN1AdX2UKGgGR0ByAE6/7BO6aAdL4mgIR0CfOMPGhmGudX2UKGgGR0ByfzTRYzSDaAdL72gIR0CfOQNy5qdpdX2UKGgGR0Bzq9dD6WPcaAdL62gIR0CfOsHYYixFdX2UKGgGR0BxsjT7VJ+VaAdL5GgIR0CfOt5yEL6UdX2UKGgGR0BwL6lVLi++aAdL22gIR0CfOwWoFV1fdX2UKGgGR0ByL96qsEJTaAdL22gIR0CfOxyMUAT7dX2UKGgGR0Bx6/wjMV1waAdL8GgIR0CfO5PPszEadX2UKGgGR0BuK1PxhDw6aAdL9mgIR0CfPSv8qFyrdX2UKGgGR0BuFWLJjlPraAdL2mgIR0CfPXeWOZLJdX2UKGgGR0BuMu/+KjzqaAdL5GgIR0CfPtaWom5UdX2UKGgGR0BwO4h3aBZqaAdL22gIR0CfP2+F10T2dX2UKGgGR0BwTyL4vexfaAdL3WgIR0CfP5/i5uqFdX2UKGgGR0Bw/Q8hcJMQaAdNAQFoCEdAn0Cs+/xlQXV9lChoBkdAcmVnTy8SPGgHS95oCEdAn0J13IMjNnV9lChoBkdAcd4c4o7V8WgHS9loCEdAn0JtdiUgS3V9lChoBkdAcXgRMN+b3GgHS9NoCEdAn0MdlAeJYXV9lChoBkdAc5C0aqCHymgHS+poCEdAn0NORgZ0jnV9lChoBkdAcLSDxb0OE2gHS/BoCEdAn0Nks8PnS3V9lChoBkdAYx3sqJ/G2mgHTegDaAhHQJ9EthoduHh1fZQoaAZHQHJMb4Ju2qloB0vwaAhHQJ9GJISUTtd1fZQoaAZHQHDEM9Oh0yRoB00AAWgIR0CfRmUliSaFdX2UKGgGR0Bxu9aiblRxaAdL1GgIR0CfRpe9i+cpdX2UKGgGR0ByEVSUC7sfaAdL4mgIR0CfR4N0vGp/dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 380, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}