Update README.md
Browse files
README.md
CHANGED
@@ -79,6 +79,22 @@ import torchaudio
|
|
79 |
from datasets import load_dataset, load_metric
|
80 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
81 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
test_dataset = load_dataset("common_voice", "eo", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
|
84 |
wer = load_metric("wer")
|
@@ -87,7 +103,7 @@ processor = Wav2Vec2Processor.from_pretrained("cpierse/wav2vec2-large-xlsr-53-es
|
|
87 |
model = Wav2Vec2ForCTC.from_pretrained("cpierse/wav2vec2-large-xlsr-53-esperanto")
|
88 |
model.to("cuda")
|
89 |
|
90 |
-
chars_to_ignore_regex = '[
|
91 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
92 |
|
93 |
# Preprocessing the datasets.
|
@@ -114,7 +130,7 @@ def evaluate(batch):
|
|
114 |
|
115 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
116 |
|
117 |
-
print("WER: {:2f}".format(100 *
|
118 |
```
|
119 |
|
120 |
**Test Result**: 14.36 %
|
|
|
79 |
from datasets import load_dataset, load_metric
|
80 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
81 |
import re
|
82 |
+
import jiwer
|
83 |
+
|
84 |
+
def chunked_wer(targets, predictions, chunk_size=None):
|
85 |
+
if chunk_size is None: return jiwer.wer(targets, predictions)
|
86 |
+
start = 0
|
87 |
+
end = chunk_size
|
88 |
+
H, S, D, I = 0, 0, 0, 0
|
89 |
+
while start < len(targets):
|
90 |
+
chunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end])
|
91 |
+
H = H + chunk_metrics["hits"]
|
92 |
+
S = S + chunk_metrics["substitutions"]
|
93 |
+
D = D + chunk_metrics["deletions"]
|
94 |
+
I = I + chunk_metrics["insertions"]
|
95 |
+
start += chunk_size
|
96 |
+
end += chunk_size
|
97 |
+
return float(S + D + I) / float(H + S + D)
|
98 |
|
99 |
test_dataset = load_dataset("common_voice", "eo", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
|
100 |
wer = load_metric("wer")
|
|
|
103 |
model = Wav2Vec2ForCTC.from_pretrained("cpierse/wav2vec2-large-xlsr-53-esperanto")
|
104 |
model.to("cuda")
|
105 |
|
106 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\„\«\(\»\)\’\']'
|
107 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
108 |
|
109 |
# Preprocessing the datasets.
|
|
|
130 |
|
131 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
132 |
|
133 |
+
print("WER: {:2f}".format(100 * chunked_wer(predictions=result["pred_strings"], targets=result["sentence"],chunk_size=2000)))
|
134 |
```
|
135 |
|
136 |
**Test Result**: 14.36 %
|