File size: 3,268 Bytes
637c384 97c3a95 637c384 97c3a95 637c384 97c3a95 637c384 572bb82 824bd23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
library_name: transformers
tags:
- pytorch
license: llama3
language:
- ko
pipeline_tag: text-generation
---
<p align="left">
<img src="https://huggingface.co/cpm-ai/Ocelot-Ko-self-instruction-10.8B-v1.0/resolve/main/ocelot.webp" width="50%"/>
<p>
# solar-kor-resume
> Update @ 2024.06.05: First release of Llama3-Ocelot-8B-instruct-v01
<!-- Provide a quick summary of what the model is/does. -->
This model card corresponds to the 10.8B Instruct version of the **Llama-Ko** model.
The train wad done on A100-80GB
**Resources and Technical Documentation**:
* [llama Model](beomi/Llama-3-Open-Ko-8B)
- [Orca-Math](https://huggingface.co/datasets/kuotient/orca-math-korean-dpo-pairs)
- [ko_Ultrafeedback_binarized](maywell/ko_Ultrafeedback_binarized)
**Citation**
**Model Developers**: frcp, nebchi, pepperonipizza97
## Model Information
It is an LLM model capable of generating Korean text, trained on a pre-trained base model with high-quality Korean SFT dataset and DPO dataset.
#### *Inputs and outputs*
- **Input:** Text string, such as a question, a prompt, or a document to be summarized.
- **Output:** Generated Korean-language text in response to the input, such as an answer to a question, or a summary of a document.
#### Running the model on a single / multi GPU
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("cpm-ai/Ocelot-Ko-self-instruction-10.8B-v1.0")
model = AutoModelForCausalLM.from_pretrained("cpm-ai/Ocelot-Ko-self-instruction-10.8B-v1.0", device_map="auto")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=4096, streamer=streamer)
text = 'λνλ―Όκ΅μ μλλ μ΄λμΈκ°μ?'
messages = [
{
"role": "user",
"content": "{}".format(text)
}
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(
prompt,
temperature=0.2,
add_special_tokens=True
)
print(outputs[0]["generated_text"][len(prompt):])
```
### results
```python
λνλ―Όκ΅μ μλλ μμΈνΉλ³μμ
λλ€.
μμΈνΉλ³μμλ μ²μλ, κ΅νμμ¬λΉ, λλ²μ λ± λνλ―Όκ΅μ μ£Όμ μ λΆκΈ°κ΄μ΄ μμΉν΄ μμ΅λλ€.
λν μμΈμλ λνλ―Όκ΅μ κ²½μ , λ¬Έν, κ΅μ‘, κ΅ν΅μ μ€μ¬μ§λ‘μ¨ λνλ―Όκ΅μ μλμ΄μ λν λμμ
λλ€.μ κ° λμμ΄ λμκΈΈ λ°λλλ€. λ κΆκΈν μ μ΄ μμΌμλ©΄ μΈμ λ μ§ λ¬Όμ΄λ³΄μΈμ!
```
```bibtex
@misc {cpm-ai/Ocelot-Ko-self-instruction-10.8B-v1.0,
author = { {frcp, nebchi, pepperonipizza97} },
title = { solar-kor-resume},
year = 2024,
url = { https://huggingface.co/cpm-ai/Ocelot-Ko-self-instruction-10.8B-v1.0 },
publisher = { Hugging Face }
}
```
Results in [LogicKor](https://github.com/StableFluffy/LogicKor)* are as follows:
| Model | Single turn* | Multi turn* | Overall* |
|:------------------------------:|:------------:|:-----------:|:--------:|
| gemini-1.5-pro-preview-0215 | 7.90 | 6.26 | 7.08 |
| xionic-1-72b-20240404 | 7.23 | 6.28 | 6.76 |
| Ocelot-Instruct | 6.79 | **6.71** | 6.75 |
| allganize/Llama-3-Alpha-Ko-8B-Instruct | 7.14 | 6.09 | 6.61 |
|