File size: 3,268 Bytes
637c384
97c3a95
 
 
637c384
97c3a95
 
 
637c384
 
97c3a95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
637c384
 
 
 
 
 
 
572bb82
824bd23
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
library_name: transformers
tags:
- pytorch
license: llama3
language:
- ko
pipeline_tag: text-generation
---

<p align="left">
  <img src="https://huggingface.co/cpm-ai/Ocelot-Ko-self-instruction-10.8B-v1.0/resolve/main/ocelot.webp" width="50%"/>
<p>
  
# solar-kor-resume
> Update @ 2024.06.05: First release of Llama3-Ocelot-8B-instruct-v01
<!-- Provide a quick summary of what the model is/does. -->

This model card corresponds to the 10.8B Instruct version of the **Llama-Ko** model. 

The train wad done on A100-80GB

**Resources and Technical Documentation**:
* [llama Model](beomi/Llama-3-Open-Ko-8B)
- [Orca-Math](https://huggingface.co/datasets/kuotient/orca-math-korean-dpo-pairs)
- [ko_Ultrafeedback_binarized](maywell/ko_Ultrafeedback_binarized)

**Citation**

**Model Developers**: frcp, nebchi, pepperonipizza97

## Model Information
It is an LLM model capable of generating Korean text, trained on a pre-trained base model with high-quality Korean SFT dataset and DPO dataset.

#### *Inputs and outputs*

- **Input:** Text string, such as a question, a prompt, or a document to be summarized.
- **Output:** Generated Korean-language text in response to the input, such as an answer to a question, or a summary of a document.

#### Running the model on a single / multi GPU
```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("cpm-ai/Ocelot-Ko-self-instruction-10.8B-v1.0")
model = AutoModelForCausalLM.from_pretrained("cpm-ai/Ocelot-Ko-self-instruction-10.8B-v1.0", device_map="auto")

pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=4096, streamer=streamer)

text = 'λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μΈκ°€μš”?'

messages = [
    {
        "role": "user",
        "content": "{}".format(text)
    }
]

prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

outputs = pipe(
    prompt,
    temperature=0.2,
    add_special_tokens=True
)
print(outputs[0]["generated_text"][len(prompt):])

```
### results

```python
λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ„œμšΈνŠΉλ³„μ‹œμž…λ‹ˆλ‹€.
μ„œμšΈνŠΉλ³„μ‹œμ—λŠ” μ²­μ™€λŒ€, κ΅­νšŒμ˜μ‚¬λ‹Ή, λŒ€λ²•μ› λ“± λŒ€ν•œλ―Όκ΅­μ˜ μ£Όμš” 정뢀기관이 μœ„μΉ˜ν•΄ μžˆμŠ΅λ‹ˆλ‹€.
λ˜ν•œ μ„œμšΈμ‹œλŠ” λŒ€ν•œλ―Όκ΅­μ˜ 경제, λ¬Έν™”, ꡐ윑, κ΅ν†΅μ˜ μ€‘μ‹¬μ§€λ‘œμ¨ λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„μ΄μž λŒ€ν‘œ λ„μ‹œμž…λ‹ˆλ‹€.μ œκ°€ 도움이 λ˜μ—ˆκΈΈ λ°”λžλ‹ˆλ‹€. 더 κΆκΈˆν•œ 점이 μžˆμœΌμ‹œλ©΄ μ–Έμ œλ“ μ§€ λ¬Όμ–΄λ³΄μ„Έμš”!
```

```bibtex
@misc {cpm-ai/Ocelot-Ko-self-instruction-10.8B-v1.0,
	author       = { {frcp, nebchi, pepperonipizza97} },
	title        = { solar-kor-resume},
	year         = 2024,
	url          = { https://huggingface.co/cpm-ai/Ocelot-Ko-self-instruction-10.8B-v1.0 },
	publisher    = { Hugging Face }
}
```

Results in [LogicKor](https://github.com/StableFluffy/LogicKor)* are as follows:

|         Model                  | Single turn* | Multi turn* | Overall* |
|:------------------------------:|:------------:|:-----------:|:--------:|
| gemini-1.5-pro-preview-0215 | 7.90 | 6.26 | 7.08 |
| xionic-1-72b-20240404 | 7.23 | 6.28 | 6.76 |
| Ocelot-Instruct  |     6.79    |    **6.71**    |   6.75  |
| allganize/Llama-3-Alpha-Ko-8B-Instruct | 7.14 | 6.09 | 6.61 |