File size: 3,730 Bytes
090dafb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a19823e
090dafb
 
 
 
 
 
 
 
 
a19823e
 
090dafb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51213a1
 
a19823e
51213a1
 
090dafb
 
51213a1
090dafb
 
 
 
 
 
a19823e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
090dafb
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
license: apache-2.0
tags:
- protein language model
- generated_from_trainer
datasets:
- train
metrics:
- spearmanr
model-index:
- name: tape-fluorescence-prediction-tape-fluorescence-evotuning-DistilProtBert
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: cradle-bio/tape-fluorescence
      type: train
    metrics:
    - name: Spearmanr
      type: spearmanr
      value: 0.5505486770316164
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# tape-fluorescence-prediction-tape-fluorescence-evotuning-DistilProtBert

This model is a fine-tuned version of [thundaa/tape-fluorescence-evotuning-DistilProtBert](https://huggingface.co/thundaa/tape-fluorescence-evotuning-DistilProtBert) on the cradle-bio/tape-fluorescence dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3377
- Spearmanr: 0.5505

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 40
- eval_batch_size: 40
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 2560
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Spearmanr |
|:-------------:|:-----:|:----:|:---------------:|:---------:|
| 6.2764        | 0.93  | 7    | 1.9927          | -0.0786   |
| 1.1206        | 1.93  | 14   | 0.8223          | -0.1543   |
| 0.8054        | 2.93  | 21   | 0.6894          | 0.2050    |
| 0.7692        | 3.93  | 28   | 0.8084          | 0.2807    |
| 0.7597        | 4.93  | 35   | 0.6613          | 0.4003    |
| 0.7416        | 5.93  | 42   | 0.6803          | 0.3829    |
| 0.7256        | 6.93  | 49   | 0.6428          | 0.4416    |
| 0.6966        | 7.93  | 56   | 0.6086          | 0.4506    |
| 0.7603        | 8.93  | 63   | 0.9119          | 0.4697    |
| 0.9187        | 9.93  | 70   | 0.6048          | 0.4757    |
| 1.0371        | 10.93 | 77   | 2.0742          | 0.4076    |
| 1.0947        | 11.93 | 84   | 0.6633          | 0.4522    |
| 0.6946        | 12.93 | 91   | 0.6008          | 0.4123    |
| 0.6618        | 13.93 | 98   | 0.5931          | 0.4457    |
| 0.8635        | 14.93 | 105  | 1.9561          | 0.4331    |
| 0.9444        | 15.93 | 112  | 0.5627          | 0.5041    |
| 0.5535        | 16.93 | 119  | 0.4348          | 0.4840    |
| 0.9059        | 17.93 | 126  | 0.6704          | 0.5123    |
| 0.5693        | 18.93 | 133  | 0.4616          | 0.5285    |
| 0.6298        | 19.93 | 140  | 0.6915          | 0.5166    |
| 0.955         | 20.93 | 147  | 0.6679          | 0.5677    |
| 0.7866        | 21.93 | 154  | 0.8136          | 0.5559    |
| 0.6687        | 22.93 | 161  | 0.4782          | 0.5561    |
| 0.5336        | 23.93 | 168  | 0.4447          | 0.5499    |
| 0.4673        | 24.93 | 175  | 0.4258          | 0.5428    |
| 0.478         | 25.93 | 182  | 0.3651          | 0.5329    |
| 0.4023        | 26.93 | 189  | 0.3688          | 0.5428    |
| 0.3961        | 27.93 | 196  | 0.3692          | 0.5509    |
| 0.3808        | 28.93 | 203  | 0.3434          | 0.5514    |
| 0.3433        | 29.93 | 210  | 0.3377          | 0.5505    |


### Framework versions

- Transformers 4.18.0
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1