File size: 12,145 Bytes
e91104d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
import cv2
import numpy as np
import skimage.color as cl
from Grayness_Index import GPconstancy_GI
from scipy.ndimage.filters import gaussian_filter
from skimage import exposure
from skimage.restoration import denoise_nl_means, estimate_sigma
_RGB_TO_YCBCR = np.array([[0.257, 0.504, 0.098],
[-0.148, -0.291, 0.439],
[0.439, -0.368, -0.071]])
_YCBCR_OFF = np.array([0.063, 0.502, 0.502])
def _mul(coeffs, image):
r = image[:, :, 0]
g = image[:, :, 1]
b = image[:, :, 2]
r0 = np.repeat(r[:, :, np.newaxis], 3, 2) * coeffs[:, 0]
r1 = np.repeat(g[:, :, np.newaxis], 3, 2) * coeffs[:, 1]
r2 = np.repeat(b[:, :, np.newaxis], 3, 2) * coeffs[:, 2]
return r0 + r1 + r2
def rgb2ycbcr(rgb):
"""sRGB to YCbCr conversion."""
clip_rgb = False
if clip_rgb:
rgb = np.clip(rgb, 0, 1)
return _mul(_RGB_TO_YCBCR, rgb) + _YCBCR_OFF
def ycbcr2rgb(rgb):
"""YCbCr to sRGB conversion."""
clip_rgb = False
rgb = _mul(np.linalg.inv(_RGB_TO_YCBCR), rgb - _YCBCR_OFF)
if clip_rgb:
rgb = np.clip(rgb, 0, 1)
return rgb
def normalize(raw_image, black_level, white_level):
if type(black_level) is list and len(black_level) == 1:
black_level = float(black_level[0])
if type(white_level) is list and len(white_level) == 1:
white_level = float(white_level[0])
black_level_mask = black_level
if type(black_level) is list and len(black_level) == 4:
if type(black_level[0]) is Ratio:
black_level = ratios2floats(black_level)
if type(black_level[0]) is Fraction:
black_level = fractions2floats(black_level)
black_level_mask = np.zeros(raw_image.shape)
idx2by2 = [[0, 0], [0, 1], [1, 0], [1, 1]]
step2 = 2
for i, idx in enumerate(idx2by2):
black_level_mask[idx[0]::step2, idx[1]::step2] = black_level[i]
normalized_image = raw_image.astype(np.float32) - black_level_mask
# if some values were smaller than black level
normalized_image[normalized_image < 0] = 0
normalized_image = normalized_image / (white_level - black_level_mask)
return normalized_image
class LCC():
def __init__(self, sigma=None):
super(LCC, self).__init__()
if sigma is None:
sigma = np.sqrt(512 ** 2 + 512 ** 2) * 0.01
self.sigma = sigma
def __call__(self, image):
ycbcr = cl.rgb2ycbcr(image)
y = (ycbcr[:, :, 0] - 16) / 219
cb = ycbcr[:, :, 1]
cr = ycbcr[:, :, 2]
blurred_y = gaussian_filter(y, sigma=self.sigma)
mask = 1 - blurred_y
mean_intensity = np.mean(y)
alpha_lower = np.log(mean_intensity) / np.log(0.5)
alpha_upper = np.log(0.5) / np.log(mean_intensity)
condition = mean_intensity < 0.5
alpha = np.zeros(mask.shape)
alpha = np.where(condition, alpha_lower, alpha_upper)
gamma = alpha ** ((0.5 - mask) / 0.5)
new_y = y ** gamma
new_y = new_y * 219 + 16
new_ycbcr = np.stack([new_y, cb, cr], 2)
im_rgb = cl.ycbcr2rgb(new_ycbcr)
# im_rgb = np.clip(im_rgb, 0, 1)
im_out = contrast_saturation_fix(im_rgb, image)
return im_out
def contrast_saturation_fix(enhanced_image, input_image, mode="LCC", n_bits=8):
im_ycbcr = rgb2ycbcr(enhanced_image)
or_ycbcr = rgb2ycbcr(input_image)
y_new = im_ycbcr[:, :, 0];
cb_new = im_ycbcr[:, :, 1];
cr_new = im_ycbcr[:, :, 2];
y = or_ycbcr[:, :, 0];
cb = or_ycbcr[:, :, 1];
cr = or_ycbcr[:, :, 2];
# dark pixels percentage
mask = np.logical_and(y < (35 / 255), (((cb - 0.5) * 2 +
(cr - 0.5) * 2) / 2) < (20 / 255))
dark_pixels = mask.flatten().sum()
if dark_pixels > 0:
ipixelCount, _ = np.histogram(y.flatten(), 256, range=(0, 1))
cdf = np.cumsum(ipixelCount)
idx = np.argmin(abs(cdf - (dark_pixels * 0.3)))
b_input30 = idx
ipixelCount, _ = np.histogram(y_new.flatten(), 256, range=(0, 1))
cdf = np.cumsum(ipixelCount)
idx = np.argmin(abs(cdf - (dark_pixels * 0.3)))
b_output30 = idx
bstr = (b_output30 - b_input30)
else:
bstr = np.floor(np.quantile(y_new.flatten(), 0.002) * 255)
if bstr > 50:
bstr = 50
dark_bound = bstr / 255
bright_b = np.floor(np.quantile(y_new.flatten(), 1 - 0.002) * 255)
if (255 - bright_b) > 50:
bright_b = 255 - 50
bright_bound = bright_b / 255
# y_new = (y_new - dark_bound) / (bright_bound - dark_bound)
y_new = exposure.rescale_intensity(y_new, in_range=(
y_new.min(), y_new.max()), out_range=(dark_bound, bright_bound))
y_new = y_new.clip(0, 1)
im_ycbcr[:, :, 0] = y_new
im_new = ycbcr2rgb(im_ycbcr)
im_new = im_new.clip(0, 1)
# Saturation
im_tmp = input_image
r = im_tmp[:, :, 0]
g = im_tmp[:, :, 1]
b = im_tmp[:, :, 2]
r_new = 0.5 * (((y_new / (y + 1e-40)) * (r + y)) + r - y)
g_new = 0.5 * (((y_new / (y + 1e-40)) * (g + y)) + g - y)
b_new = 0.5 * (((y_new / (y + 1e-40)) * (b + y)) + b - y)
im_new[:, :, 0] = r_new
im_new[:, :, 1] = g_new
im_new[:, :, 2] = b_new
return im_new
def gamma_correction(img, exp):
return img ** exp
def black_stretch(img, perc=0.2):
im_hsv = cl.rgb2hsv(img.clip(0, 1))
v = im_hsv[:, :, 2]
dark_bound = np.quantile(v.flatten(), perc, method='closest_observation')
v_new = (v - dark_bound) / (1 - dark_bound)
im_hsv[:, :, 2] = v_new.clip(0, 1)
out = cl.hsv2rgb(im_hsv)
return out.clip(0, 1)
def saturation_scale(img, scale=2.):
img_hsv = cl.rgb2hsv(img.clip(0, 1))
s = img_hsv[:, :, 1]
s *= scale
img_hsv[:, :, 1] = s
return cl.hsv2rgb(np.clip(img_hsv, 0, 1))
def global_mean_contrast(x, beta=0.5):
x_mean = np.mean(np.mean(x, 0), 0)
x_mean = np.expand_dims(np.expand_dims(x_mean, 0), 0)
x_mean = np.repeat(np.repeat(x_mean, x.shape[1], 1), x.shape[0], 0)
# scale all channels
out = x_mean + beta * (x - x_mean)
return out
def sharpening(image, sigma=2.0, scale=1):
gaussian = cv2.GaussianBlur(image, (0, 0), sigma)
unsharp_image = image + scale * (image - gaussian)
return unsharp_image.clip(0, 1)
def illumination_parameters_estimation(current_image, illumination_estimation_option):
ie_method = illumination_estimation_option.lower()
if ie_method == "gw":
ie = np.mean(current_image, axis=(0, 1))
ie /= ie[1]
return ie
elif ie_method == "sog":
sog_p = 4.
ie = np.mean(current_image**sog_p, axis=(0, 1))**(1 / sog_p)
ie /= ie[1]
return ie
elif ie_method == "wp":
ie = np.max(current_image, axis=(0, 1))
ie /= ie[1]
return ie
elif ie_method == "iwp":
samples_count = 20
sample_size = 20
rows, cols = current_image.shape[:2]
data = np.reshape(current_image, (rows * cols, 3))
maxima = np.zeros((samples_count, 3))
for i in range(samples_count):
maxima[i, :] = np.max(data[np.random.randint(
low=0, high=rows * cols, size=(sample_size)), :], axis=0)
ie = np.mean(maxima, axis=0)
ie /= ie[1]
return ie
else:
raise ValueError(
'Bad illumination_estimation_option value! Use the following options: "gw", "wp", "sog", "iwp"')
def wb(demosaic_img, as_shot_neutral):
as_shot_neutral = np.asarray(as_shot_neutral)
# transform vector into matrix
if as_shot_neutral.shape == (3,):
as_shot_neutral = np.diag(1. / as_shot_neutral)
assert as_shot_neutral.shape == (3, 3)
white_balanced_image = np.dot(demosaic_img, as_shot_neutral.T)
white_balanced_image = np.clip(white_balanced_image, 0.0, 1.0)
return white_balanced_image
def white_balance(img, n=0.1, th=1e-4, denoise_first=False):
uint = False
if np.issubdtype(img.dtype, np.uint8):
uint = True
if uint:
img = img.astype(np.float32) / 255
tot_pixels = img.shape[0] * img.shape[1]
# compute number of gray pixels
num_gray_pixels = int(np.floor(n * tot_pixels / 100))
# denoise if necessary
if denoise_first:
sigma_est = 1# np.mean(estimate_sigma(img, channel_axis=-1))
img_ = cv2.GaussianBlur(img,(0,0),5)
else:
img_ = img
# compute global illuminant values
lumTriplet = GPconstancy_GI(img_, num_gray_pixels, th)
lumTriplet /= lumTriplet.max()
out = wb(img, lumTriplet)
if uint:
return (out * 255).astype(np.uint8)
else:
return out
def scurve(img, alpha=None, lmbd=1 / 1.8, blacks=False):
x = img
if alpha is None:
im_hsv = cl.rgb2hsv(img.clip(0, 1))
v = im_hsv[:, :, 2]
alpha = np.quantile(v.flatten(), 0.02, method='closest_observation')
if not blacks:
out = np.where(x <= alpha,
x, # alpha - alpha * (1 - x / alpha) ** lmbd,
alpha + (1 - alpha) *
((x - alpha) / (1 - alpha)).clip(min=0) ** lmbd
)
else:
out = np.where(x <= alpha,
alpha - alpha * (1 - x / alpha) ** lmbd,
x
)
# out = out.clip(0, 1)
return out
def scurve_central(img, lmbd=1 / 1.4, blacks=False):
x = img
im_hsv = cl.rgb2hsv(img.clip(0, 1))
v = im_hsv[:, :, 2]
alpha1 = np.quantile(v.flatten(), 0.2, method='closest_observation')
alpha2 = np.quantile(v.flatten(), 0.9, method='closest_observation')
out = np.where(x <= alpha1,
x,
np.where(x >= alpha2,
x,
alpha1 + (alpha2 - alpha1) *
((x - alpha1) / (alpha2 - alpha1)).clip(min=0) ** lmbd
)
)
return out
def imadjust(img, hi=0.9999, pi=0.0001):
'''
Python version of matlab imadjust
'''
im_hsv = cl.rgb2hsv(img.clip(0, 1))
v = im_hsv[:, :, 2]
hi = np.quantile(v.flatten(), hi, method='closest_observation')
li = np.quantile(v.flatten(), pi, method='closest_observation')
if hi < 0.7:
hi = np.quantile(v.flatten(), 0.995, method='closest_observation')
if hi == 1:
v_tmp = v.flatten()
v_tmp = v_tmp[v_tmp != 1]
hi = np.quantile(v_tmp, 0.9995, method='closest_observation')
if li == 0:
v_tmp = v.flatten()
v_tmp = v_tmp[v_tmp != 0]
li = np.quantile(v_tmp, 0.0001, method='closest_observation')
x = img
li = li
hi = hi
lo = 0
ho = 0.9
gamma = 1
out = ((x - li) / (hi - li)) ** gamma
out = out * (ho - lo) + lo
return out
def denoise_raw(image, l_w=3, ch_w=20):
im_yuv = cl.rgb2yuv(image)
# Separately process luma and choma
patch_kw = dict(patch_size=5,
patch_distance=6
)
sigma_est = np.mean(estimate_sigma(im_yuv[:, :, 0]))
den_y = denoise_nl_means(im_yuv[:, :, 0], h=l_w * sigma_est, fast_mode=True,
**patch_kw)
patch_kw = dict(patch_size=5,
patch_distance=6,
channel_axis=-1
)
sigma_est = np.mean(estimate_sigma(im_yuv[:, :, 1:2], channel_axis=-1))
den_uv = denoise_nl_means(im_yuv[:, :, 1:3], h=ch_w * sigma_est, fast_mode=True,
**patch_kw)
out = im_yuv
out[:, :, 0] = den_y
out[:, :, 1:3] = den_uv
del den_y
del den_uv
out = cl.yuv2rgb(out)
return out
def denoise_rgb(image, l_w=3, ch_w=None):
#patch_kw = dict(patch_size=5,
# patch_distance=6
# )
patch_kw = {}
sigma_est = np.mean(estimate_sigma(image, channel_axis=2))
out = denoise_nl_means(image, h=l_w * sigma_est, fast_mode=True,
**patch_kw, channel_axis=2)
return out
|