File size: 6,940 Bytes
e91104d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
###################################################
# Night challenge 2024
###################################################
import argparse
import threading
from pathlib import Path
import os
import queue
from time import time
from tqdm import tqdm
import blocks as B
import cv2
import numpy as np
import skimage.color as cl
from skimage.transform import resize
from raw_prc_pipeline import (expected_img_ext, expected_landscape_img_height,
expected_landscape_img_width)
from raw_prc_pipeline.pipeline import RawProcessingPipelineDemo
from tqdm import tqdm
from utils import fraction_from_json, json_read
def parse_args():
parser = argparse.ArgumentParser(
description='Script for processing PNG images with given metadata files.')
# folder params
parser.add_argument('-p', '--png_dir', type=Path, required=True,
help='Path of the directory containing PNG images with metadata files.')
parser.add_argument('-o', '--out_dir', type=Path, default='./results',
help='Path to the directory where processed images will be saved. Images will be saved in JPG format.')
# raw processing params
parser.add_argument('-ie', '--illumination_estimation', type=str, default='',
help='Options for illumination estimation algorithms: "gw", "wp", "sog", "iwp".')
parser.add_argument('-tm', '--tone_mapping', type=str, default='Flash',
help='Options for tone mapping algorithms: "Base", "Flash", "Storm", "Linear", "Drago", "Mantiuk", "Reinhard".')
# srgb processing params
parser.add_argument('-gc', '--gamma_correction', type=float, default=1 / 1.4,
help='Global gamma correction.')
parser.add_argument('-dm', '--denoise_mask', type=float, default=0.6,
help='Value to control denoising effect in bright regions. Should be between 0 and 1')
args = parser.parse_args()
if args.out_dir is None:
args.out_dir = args.png_dir
return args
class PNGProcessing():
def __init__(self, ie_method, tone_mapping, gamma_correction, denoise_mask):
self.pipeline_params = {
'illumination_estimation': ie_method,
# 'tone_mapping': tone_mapping,
'out_landscape_width': expected_landscape_img_width,
'out_landscape_height': expected_landscape_img_height
}
self.pipeline = RawProcessingPipelineDemo(**self.pipeline_params)
self.gamma_correction = gamma_correction
self.denoise_mask = denoise_mask
def pipeline_exec(self, raw_image, metadata):
normalized_image = self.pipeline.normalize(raw_image, metadata)
demosaiced_image = self.pipeline.demosaic(normalized_image, metadata)
# check the original demosaicing to see if results are the same
demosaiced_image = resize(demosaiced_image, (768, 1024), preserve_range=True, anti_aliasing=True)
wb_image = self.pipeline.white_balance(demosaiced_image, metadata)
xyz_image = self.pipeline.xyz_transform(wb_image, metadata)
srgb_image = self.pipeline.srgb_transform(xyz_image, metadata)
denoised_image = B.denoise_raw(
srgb_image, l_w=1, ch_w=7)
# srgb_image, l_w=4.5, ch_w=20)
# srgb_image, l_w=1.659923974475318, ch_w=5.459274910995606)
light_enhancer = B.LCC(2)
# light_enhancer = B.LCC(sigma=6.463076463115174)
light_image = light_enhancer(denoised_image).clip(0)
contrast_image = B.global_mean_contrast(light_image, beta=1.5).clip(0)
# contrast_image = B.global_mean_contrast(light_image, beta=0.8653634653721171).clip(0)
gamma_image = B.scurve(contrast_image, alpha=0, lmbd=(1 / 1.8)).clip(0)
# gamma_image = B.scurve(contrast_image, alpha=0.7050463096367395, lmbd=0.9740931227248038).clip(0)
black_adj_image = B.imadjust(gamma_image, 0.99).clip(0)
# black_adj_image = B.imadjust(gamma_image, 0.9957007298972433, 0.01697803128505186).clip(0)
im_h = cl.rgb2hsv(black_adj_image)[:, :, 2]
if im_h.mean() < 0.2:
black_adj_image = B.scurve_central(black_adj_image, lmbd=(1 / 1.8)).clip(0)
# black_adj_image = B.scurve_central(black_adj_image, lmbd=0.6913136563678325).clip(0)
elif im_h.mean() < 0.25:
black_adj_image = B.scurve_central(black_adj_image, lmbd=(1 / 1.4)).clip(0)
# black_adj_image = B.scurve_central(black_adj_image, lmbd=0.3612134419536918).clip(0)
elif im_h.mean() > 0.4:
black_adj_image = B.gamma_correction(black_adj_image, 1.6).clip(0)
# black_adj_image = B.gamma_correction(black_adj_image, 3.5208650132731356).clip(0)
sharp_image = B.sharpening(black_adj_image, sigma=1).clip(0)
# sharp_image = B.sharpening(black_adj_image, 1.5389081796026578, 0.05456721376794549).clip(0)
wb_image = B.white_balance(sharp_image, denoise_first=True).clip(0)
# wb_image = B.white_balance(sharp_image, 0.740831363817609, 0.004044358054560114).clip(0)
uint8_image = self.pipeline.to_uint8(wb_image, metadata)
# resized_image = self.pipeline.resize(uint8_image, metadata)
resulted_image = self.pipeline.fix_orientation(uint8_image, metadata)
return resulted_image
def __call__(self, png_path: Path, out_path: Path):
# parse raw img
raw_image = cv2.imread(str(png_path), cv2.IMREAD_UNCHANGED)
# parse metadata
metadata = json_read(png_path.with_suffix(
'.json'), object_hook=fraction_from_json)
start = time()
output_image = self.pipeline_exec(raw_image, metadata)
end = time()
# save results
output_image = cv2.cvtColor(output_image, cv2.COLOR_RGB2BGR)
cv2.imwrite(str(out_path), output_image, [
cv2.IMWRITE_JPEG_QUALITY, 100])
return end - start
def process(png_processor, out_dir, png_paths):
out_paths = [
out_dir / png_path.with_suffix(expected_img_ext).name for png_path in png_paths]
times = []
pbar = tqdm(total=len(png_paths), ncols=100)
for png_path, out_path in zip(png_paths, out_paths):
runtime = png_processor(png_path, out_path)
times.append(runtime)
pbar.update()
return times
def main(png_dir, out_dir, illumination_estimation, tone_mapping, gamma_correction, denoise_mask):
# out_dir.mkdir(exist_ok=True)
os.makedirs(out_dir, exist_ok=True)
png_paths = list(png_dir.glob('*.png'))
png_processor = PNGProcessing(
illumination_estimation, tone_mapping, gamma_correction, denoise_mask)
times = process(png_processor, out_dir, png_paths)
print(f'Average time: {np.mean(times)} seconds.')
if __name__ == '__main__':
args = parse_args()
main(**vars((args)))
|