File size: 23,037 Bytes
bd1c686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import trunc_normal_, DropPath
from timm.models.registry import register_model

#import Convnext as PreConv
from myFFCResblock0 import myFFCResblock


# A ConvNet for the 2020s 
# original implementation  https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py
# paper https://arxiv.org/pdf/2201.03545.pdf

class ConvNeXt0(nn.Module):
    r""" ConvNeXt
        A PyTorch impl of : `A ConvNet for the 2020s`  -
          https://arxiv.org/pdf/2201.03545.pdf
    Args:
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
        dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
        drop_path_rate (float): Stochastic depth rate. Default: 0.
        layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
        head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
    """
    def __init__(self, block, in_chans=3, num_classes=1000, 
                 depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], drop_path_rate=0., 
                 layer_scale_init_value=1e-6, head_init_scale=1.,
                 ):
        super().__init__()

        self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers
        stem = nn.Sequential(
            nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
            LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
        )
        self.downsample_layers.append(stem)
        for i in range(3):
            downsample_layer = nn.Sequential(
                    LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
                    nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
            )
            self.downsample_layers.append(downsample_layer)

        self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks
        dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] 
        cur = 0
        for i in range(4):
            stage = nn.Sequential(
                *[block(dim=dims[i], drop_path=dp_rates[cur + j], 
                layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])]
            )
            self.stages.append(stage)
            cur += depths[i]

        self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer
        self.head = nn.Linear(dims[-1], num_classes)

        self.apply(self._init_weights)
        self.head.weight.data.mul_(head_init_scale)
        self.head.bias.data.mul_(head_init_scale)

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            trunc_normal_(m.weight, std=.02)
            nn.init.constant_(m.bias, 0)

    def forward_features(self, x):
        for i in range(4):
            x = self.downsample_layers[i](x)
            x = self.stages[i](x)
        return self.norm(x.mean([-2, -1])) # global average pooling, (N, C, H, W) -> (N, C)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x








def dwt_init(x):
    x01 = x[:, :, 0::2, :] / 2   #x01.shape=[4,3,128,256]   
    x02 = x[:, :, 1::2, :] / 2   #x02.shape=[4,3,128,256]    
    x1 = x01[:, :, :, 0::2]    #x1.shape=[4,3,128,128]  
    x2 = x02[:, :, :, 0::2]       #x2.shape=[4,3,128,128]  
    x3 = x01[:, :, :, 1::2]     #x3.shape=[4,3,128,128]  
    x4 = x02[:, :, :, 1::2]  #x4.shape=[4,3,128,128]  
    x_LL = x1 + x2 + x3 + x4
    x_HL = -x1 - x2 + x3 + x4
    x_LH = -x1 + x2 - x3 + x4
    x_HH = x1 - x2 - x3 + x4
    return x_LL, torch.cat((x_HL, x_LH, x_HH), 1)

class DWT(nn.Module):
    def __init__(self):
        super(DWT, self).__init__()
        self.requires_grad = False
    def forward(self, x):
        return dwt_init(x)

class DWT_transform(nn.Module):
    def __init__(self, in_channels,out_channels):
        super().__init__()
        self.dwt = DWT()
        self.conv1x1_low = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0)
        self.conv1x1_high = nn.Conv2d(in_channels*3, out_channels, kernel_size=1, padding=0)
    def forward(self, x):
        dwt_low_frequency,dwt_high_frequency = self.dwt(x)
        dwt_low_frequency = self.conv1x1_low(dwt_low_frequency)
        dwt_high_frequency = self.conv1x1_high(dwt_high_frequency)
        return dwt_low_frequency,dwt_high_frequency

def blockUNet(in_c, out_c, name, transposed=False, bn=False, relu=True, dropout=False):
    block = nn.Sequential()
    if relu:
        block.add_module('%s_relu' % name, nn.ReLU(inplace=True))
    else:
        block.add_module('%s_leakyrelu' % name, nn.LeakyReLU(0.2, inplace=True))
    if not transposed:
        block.add_module('%s_conv' % name, nn.Conv2d(in_c, out_c, 4, 2, 1, bias=False))
    else:
        block.add_module('%s_conv' % name, nn.Conv2d(in_c, out_c, kernel_size=3, stride=1, padding=1))
        block.add_module('%s_bili' % name, nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True))
    if bn:
        block.add_module('%s_bn' % name, nn.BatchNorm2d(out_c))
    if dropout:
        block.add_module('%s_dropout' % name, nn.Dropout2d(0.5, inplace=True))
    return block

# DW-GAN: A Discrete Wavelet Transform GAN for NonHomogeneous Dehazing 2021 
# original implementation  https://github.com/liuh127/NTIRE-2021-Dehazing-DWGAN/blob/main/model.py
# paper https://openaccess.thecvf.com/content/CVPR2021W/NTIRE/papers/Fu_DW-GAN_A_Discrete_Wavelet_Transform_GAN_for_NonHomogeneous_Dehazing_CVPRW_2021_paper.pdf
class dwt_ffc_UNet2(nn.Module):
    def __init__(self,output_nc=3, nf=16):
        super(dwt_ffc_UNet2, self).__init__()
        layer_idx = 1
        name = 'layer%d' % layer_idx
        layer1 = nn.Sequential()
        layer1.add_module(name, nn.Conv2d(16, nf-1, 4, 2, 1, bias=False))
        layer_idx += 1
        name = 'layer%d' % layer_idx
        layer2 = blockUNet(nf, nf*2-2, name, transposed=False, bn=True, relu=False, dropout=False)
        layer_idx += 1
        name = 'layer%d' % layer_idx
        layer3 = blockUNet(nf*2, nf*4-4, name, transposed=False, bn=True, relu=False, dropout=False)
        layer_idx += 1
        name = 'layer%d' % layer_idx
        layer4 = blockUNet(nf*4, nf*8-8, name, transposed=False, bn=True, relu=False, dropout=False)
        layer_idx += 1
        name = 'layer%d' % layer_idx
        layer5 = blockUNet(nf*8, nf*8-16, name, transposed=False, bn=True, relu=False, dropout=False)
        layer_idx += 1
        name = 'layer%d' % layer_idx
        layer6 = blockUNet(nf*4, nf*4, name, transposed=False, bn=False, relu=False, dropout=False)

        layer_idx -= 1
        name = 'dlayer%d' % layer_idx
        dlayer6 = blockUNet(nf * 4, nf * 2, name, transposed=True, bn=True, relu=True, dropout=False)
        layer_idx -= 1
        name = 'dlayer%d' % layer_idx
        dlayer5 = blockUNet(nf * 16+16, nf * 8, name, transposed=True, bn=True, relu=True, dropout=False)
        layer_idx -= 1
        name = 'dlayer%d' % layer_idx
        dlayer4 = blockUNet(nf * 16+8, nf * 4, name, transposed=True, bn=True, relu=True, dropout=False)
        layer_idx -= 1
        name = 'dlayer%d' % layer_idx
        dlayer3 = blockUNet(nf * 8+4, nf * 2, name, transposed=True, bn=True, relu=True, dropout=False)
        layer_idx -= 1
        name = 'dlayer%d' % layer_idx
        dlayer2 = blockUNet(nf * 4+2, nf, name, transposed=True, bn=True, relu=True, dropout=False)
        layer_idx -= 1
        name = 'dlayer%d' % layer_idx
        dlayer1 = blockUNet(nf * 2+1, nf * 2, name, transposed=True, bn=True, relu=True, dropout=False)

        self.initial_conv=nn.Conv2d(9,16,3,padding=1)
        self.bn1=nn.BatchNorm2d(16)
        self.layer1 = layer1
        self.DWT_down_0= DWT_transform(9,1)
        self.layer2 = layer2
        self.DWT_down_1 = DWT_transform(16, 2)
        self.layer3 = layer3
        self.DWT_down_2 = DWT_transform(32, 4)
        self.layer4 = layer4
        self.DWT_down_3 = DWT_transform(64, 8)
        self.layer5 = layer5
        self.DWT_down_4 = DWT_transform(128, 16)
        self.layer6 = layer6
        self.dlayer6 = dlayer6
        self.dlayer5 = dlayer5
        self.dlayer4 = dlayer4
        self.dlayer3 = dlayer3
        self.dlayer2 = dlayer2
        self.dlayer1 = dlayer1
        self.tail_conv1 = nn.Conv2d(48, 32, 3, padding=1, bias=True)
        self.bn2=nn.BatchNorm2d(32)
        self.tail_conv2 = nn.Conv2d(nf*2, output_nc, 3,padding=1, bias=True)


        self.FFCResNet = myFFCResblock(input_nc=64, output_nc=64)

    def forward(self, x):
        conv_start=self.initial_conv(x)
        conv_start=self.bn1(conv_start)
        conv_out1 = self.layer1(conv_start)
        dwt_low_0,dwt_high_0=self.DWT_down_0(x)
        out1=torch.cat([conv_out1, dwt_low_0], 1)
        conv_out2 = self.layer2(out1)
        dwt_low_1,dwt_high_1= self.DWT_down_1(out1)
        out2 = torch.cat([conv_out2, dwt_low_1], 1)
        conv_out3 = self.layer3(out2)

        dwt_low_2,dwt_high_2 = self.DWT_down_2(out2)
        out3 = torch.cat([conv_out3, dwt_low_2], 1)

        # conv_out4 = self.layer4(out3)
        # dwt_low_3,dwt_high_3 = self.DWT_down_3(out3)
        # out4 = torch.cat([conv_out4, dwt_low_3], 1)

        # conv_out5 = self.layer5(out4)
        # dwt_low_4,dwt_high_4 = self.DWT_down_4(out4)
        # out5 = torch.cat([conv_out5, dwt_low_4], 1)

        # out6 = self.layer6(out5)
   
        
        out3_ffc= self.FFCResNet(out3)


        dout3 = self.dlayer6(out3_ffc)

      
        Tout3_out2 = torch.cat([dout3, out2,dwt_high_1], 1)
        Tout2 = self.dlayer2(Tout3_out2)
        Tout2_out1 = torch.cat([Tout2, out1,dwt_high_0], 1)
        Tout1 = self.dlayer1(Tout2_out1)
        
        Tout1_outinit = torch.cat([Tout1, conv_start], 1)
        tail1=self.tail_conv1(Tout1_outinit)
        tail2=self.bn2(tail1)
        dout1 = self.tail_conv2(tail2)


        return dout1






class Block(nn.Module):
    r""" ConvNeXt Block. There are two equivalent implementations:
    (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
    (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
    We use (2) as we find it slightly faster in PyTorch
    
    Args:
        dim (int): Number of input channels.
        drop_path (float): Stochastic depth rate. Default: 0.0
        layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
    """
    def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
        super().__init__()
        self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
        self.norm = LayerNorm(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.pwconv2 = nn.Linear(4 * dim, dim)
        self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), 
                                    requires_grad=True) if layer_scale_init_value > 0 else None
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        input = x
        x = self.dwconv(x)
        x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
        x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.pwconv2(x)
        if self.gamma is not None:
            x = self.gamma * x
        x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)

        x = input + self.drop_path(x)
        return x


class ConvNeXt(nn.Module):
    def __init__(self, block, in_chans=3, num_classes=1000, 
                 depths=[3, 3, 27, 3], dims=[256, 512, 1024,2048], drop_path_rate=0., 
                 layer_scale_init_value=1e-6, head_init_scale=1.,
                 ):
        super().__init__()

        self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers
        stem = nn.Sequential(
            nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
            LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
        )
        self.downsample_layers.append(stem)
        for i in range(3):
            downsample_layer = nn.Sequential(
                    LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
                    nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
            )
            self.downsample_layers.append(downsample_layer)

        self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks
        dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] 
        cur = 0
        for i in range(4):
            stage = nn.Sequential(
                *[block(dim=dims[i], drop_path=dp_rates[cur + j], 
                layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])]
            )
            self.stages.append(stage)
            cur += depths[i]

        self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer
        self.head = nn.Linear(dims[-1], num_classes)

        self.head.weight.data.mul_(head_init_scale)
        self.head.bias.data.mul_(head_init_scale)


    def forward(self, x):
        x_layer1 = self.downsample_layers[0](x)
        x_layer1 = self.stages[0](x_layer1)

        

        x_layer2 = self.downsample_layers[1](x_layer1)
        x_layer2 = self.stages[1](x_layer2)
        

        x_layer3 = self.downsample_layers[2](x_layer2)
        out = self.stages[2](x_layer3)
          

        return x_layer1, x_layer2, out

class LayerNorm(nn.Module):
    r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. 
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with 
    shape (batch_size, height, width, channels) while channels_first corresponds to inputs 
    with shape (batch_size, channels, height, width).
    """
    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise NotImplementedError 
        self.normalized_shape = (normalized_shape, )
    
    def forward(self, x):
        if self.data_format == "channels_last":
            return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        elif self.data_format == "channels_first":
            u = x.mean(1, keepdim=True)
            s = (x - u).pow(2).mean(1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.eps)
            x = self.weight[:, None, None] * x + self.bias[:, None, None]
            return x


class PALayer(nn.Module):
    def __init__(self, channel):
        super(PALayer, self).__init__()
        self.pa = nn.Sequential(
            nn.Conv2d(channel, channel // 8, 1, padding=0, bias=True),
            nn.ReLU(inplace=True),
            nn.Conv2d(channel // 8, 1, 1, padding=0, bias=True),
            nn.Sigmoid()
        )
    def forward(self, x):
        y = self.pa(x)
        return x * y

class CALayer(nn.Module):
    def __init__(self, channel):
        super(CALayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.ca = nn.Sequential(
            nn.Conv2d(channel, channel // 8, 1, padding=0, bias=True),
            nn.ReLU(inplace=True),
            nn.Conv2d(channel // 8, channel, 1, padding=0, bias=True),
            nn.Sigmoid()
        )
    def forward(self, x):
        y = self.avg_pool(x)
        y = self.ca(y)
        return x * y

class CP_Attention_block(nn.Module):
    def __init__(self, conv, dim, kernel_size):
        super(CP_Attention_block, self).__init__()
        self.conv1 = conv(dim, dim, kernel_size, bias=True)
        self.act1 = nn.ReLU(inplace=True)
        self.conv2 = conv(dim, dim, kernel_size, bias=True)
        self.calayer = CALayer(dim)
        self.palayer = PALayer(dim)
    def forward(self, x):
        res = self.act1(self.conv1(x))
        res = res + x
        res = self.conv2(res)
        res = self.calayer(res)
        res = self.palayer(res)
        res += x
        return res

def default_conv(in_channels, out_channels, kernel_size, bias=True):
    return nn.Conv2d(in_channels, out_channels, kernel_size, padding=(kernel_size // 2), bias=bias)

class knowledge_adaptation_convnext(nn.Module):
    def __init__(self):
        super(knowledge_adaptation_convnext, self).__init__()
        self.encoder = ConvNeXt(Block, in_chans=9,num_classes=1000, depths=[3, 3, 27, 3], dims=[256, 512, 1024,2048], drop_path_rate=0., layer_scale_init_value=1e-6, head_init_scale=1.)
        '''pretrained_model = ConvNeXt0(Block, in_chans=3,num_classes=1000, depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], drop_path_rate=0., layer_scale_init_value=1e-6, head_init_scale=1.)
        #pretrained_model=nn.DataParallel(pretrained_model)
        checkpoint=torch.load('./weights/convnext_xlarge_22k_1k_384_ema.pth')
        #for k,v in checkpoint["model"].items():
            #print(k)
        #url="https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_384.pth"
        
        #checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cuda:0")
        pretrained_model.load_state_dict(checkpoint["model"])
        
        pretrained_dict = pretrained_model.state_dict()
        model_dict = self.encoder.state_dict()
        key_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
        model_dict.update(key_dict)
        self.encoder.load_state_dict(model_dict)'''


        self.up_block= nn.PixelShuffle(2)
        self.attention0 = CP_Attention_block(default_conv, 1024, 3)
        self.attention1 = CP_Attention_block(default_conv, 256, 3)
        self.attention2 = CP_Attention_block(default_conv, 192, 3)
        self.attention3 = CP_Attention_block(default_conv, 112, 3)
        self.attention4 = CP_Attention_block(default_conv, 28, 3)
        self.conv_process_1 = nn.Conv2d(28, 28, kernel_size=3,padding=1)
        self.conv_process_2 = nn.Conv2d(28, 28, kernel_size=3,padding=1)
        self.tail = nn.Sequential(nn.ReflectionPad2d(3), nn.Conv2d(28, 3, kernel_size=7, padding=0), nn.Tanh())
    def forward(self, input):
        x_layer1, x_layer2, x_output = self.encoder(input)

        x_mid = self.attention0(x_output)  #[1024,24,24]

        x = self.up_block(x_mid)      #[256,48,48]
        x = self.attention1(x)

        x = torch.cat((x, x_layer2), 1)  #[768,48,48]

        x = self.up_block(x)            #[192,96,96]
        x = self.attention2(x)
        x = torch.cat((x, x_layer1), 1)   #[448,96,96]
        x = self.up_block(x)            #[112,192,192]
        x = self.attention3(x)              
        
        x = self.up_block(x)        #[28,384,384]
        x = self.attention4(x)

        x=self.conv_process_1(x)
        out=self.conv_process_2(x)
        return out


class fusion_net(nn.Module):
    def __init__(self):
        super(fusion_net, self).__init__()
        self.dwt_branch=dwt_ffc_UNet2()
        self.knowledge_adaptation_branch=knowledge_adaptation_convnext()
        self.fusion = nn.Sequential(nn.ReflectionPad2d(3), nn.Conv2d(31, 3, kernel_size=7, padding=0), nn.Tanh())
    def forward(self, input):
        dwt_branch=self.dwt_branch(input)
        knowledge_adaptation_branch=self.knowledge_adaptation_branch(input)
        x = torch.cat([dwt_branch, knowledge_adaptation_branch], 1)
        x = self.fusion(x)
        return x



class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.net = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, padding=1),
            nn.LeakyReLU(0.2),

            nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(64),
            nn.LeakyReLU(0.2),

            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.LeakyReLU(0.2),

            nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(128),
            nn.LeakyReLU(0.2),

            nn.Conv2d(128, 256, kernel_size=3, padding=1),
            nn.BatchNorm2d(256),
            nn.LeakyReLU(0.2),

            nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.LeakyReLU(0.2),

            nn.Conv2d(256, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.LeakyReLU(0.2),

            nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(512),
            nn.LeakyReLU(0.2),

            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(512, 1024, kernel_size=1),
            nn.LeakyReLU(0.2),
            nn.Conv2d(1024, 1, kernel_size=1)
        )

    def forward(self, x):
        batch_size = x.size(0)
        return torch.sigmoid(self.net(x).view(batch_size))


class Discriminator2(nn.Module):
    def __init__(self):
        super(Discriminator2, self).__init__()
        self.net = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, padding=1),
            nn.LeakyReLU(0.2),

            nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(64),
            nn.LeakyReLU(0.2),

            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.LeakyReLU(0.2),

            nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(128),
            nn.LeakyReLU(0.2),

            nn.Conv2d(128, 256, kernel_size=3, padding=1),
            nn.BatchNorm2d(256),
            nn.LeakyReLU(0.2),

            nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.LeakyReLU(0.2),

            nn.Conv2d(256, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.LeakyReLU(0.2),

            nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(512),
            nn.LeakyReLU(0.2),

            nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(512),
            nn.LeakyReLU(0.2),
            
            nn.Conv2d(512, 1, kernel_size=3, padding=1),
        )

    def forward(self, x):
        return self.net(x)

if __name__ == '__main__':

    device = torch.device("cuda:0")

    # Create model
    im = torch.rand(1, 3, 640, 640).to(device)
    model_g = fusion_net().to(device)

    out_data = model_g(im)