NPRC24 / IIR-Lab /aligned_utils.py
Artyom
IIRLab
6721043 verified
raw
history blame
9.15 kB
import numpy as np
import cv2
# from PIL import Image
import os
import glob
from tqdm import tqdm
from pathlib import Path
import torch
import torch.nn.functional as F
# Parameters of the motion estimation algorithms
def warp_flow(img, flow):
'''
Applies to img the transformation described by flow.
'''
#assert len(flow.shape) == 3 and flow.shape[-1] == 2
hf, wf = flow.shape[:2]
# flow = -flow
flow[:, :, 0] += np.arange(wf)
flow[:, :, 1] += np.arange(hf)[:, np.newaxis]
res = cv2.remap(img, flow, None, cv2.INTER_LINEAR)
return res
def estimate_invflow(img0, img1, me_algo):
'''
Estimates inverse optical flow by using the me_algo algorithm.
'''
# Create estimator object
if me_algo == "DeepFlow":
of_estim = cv2.optflow.createOptFlow_DeepFlow()
else:
raise Exception("Incorrect motion estimation algorithm")
# Run flow estimation (inverse flow)
flow = of_estim.calc(img1, img0, None)
# flow = cv.calcOpticalFlowFarneback(prvs,next, None, 0.5, 3, 15, 3, 5, 1.2, 0)
return flow
def align_frames(img_to_align, img_source, mc_alg='DeepFlow'):
'''
Applies to img_to_align a transformation which converts it into img_source.
Args:
img_to_align: HxWxC image
img_source: HxWxC image
mc_alg: selects between DeepFlow, SimpleFlow, and TVL1. DeepFlow runs by default.
Returns:
HxWxC aligned image
'''
if img_to_align.ndim == 2:
img0 = img_to_align
img1 = img_source
else:
img0 = img_to_align[:, :, 1]
img1 = img_source[:, :, 1]
out_img = None
# Align frames according to selection in mc_alg
flow = estimate_invflow(img0, img1, mc_alg)
#print(flow.astype(np.float32))
# rectifier
out_img = warp_flow(img_to_align, flow.astype(np.float32))
return out_img, flow
def SIFT(img1gray, img2gray):
# if i == 0:
sift = cv2.xfeatures2d.SIFT_create() # 创建sift方法
# sift = cv2.SURF_create() # 创建sift方法
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1gray, None) # 用sift找到图像中的关键点和描述子
kp2, des2 = sift.detectAndCompute(img2gray, None)
# FLANN parameters
FLANN_INDEX_KDTREE = 1 # FLANN使用的算法选择,有0,1等,具体多少算法不太清楚。
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=10)
flann = cv2.FlannBasedMatcher(index_params, search_params) # 这里创建FLANN匹配算法
matches = flann.knnMatch(des1, des2, k=2) # 这里是使用创建的FLANN算法对两张图上的描述子进行匹配,使用k近邻匹配,k=2即最近邻匹配
# 上述返回的matches是一种数据类型,这样一个类型中包含了matches.queryIdx .trainIdx 和 .distance,由于是knn,k=2,返回两个最相似的特征点。
# 而上面返回的特征点kp1和kp2也是一种类,包含了kp1.pt:关键点坐标 kp1.angle:关键点方向 kp1.response:关键点强度 kp1.size该点直径大小
# Need to draw only good matches, so create a mask
matchesMask = [[0, 0] for i in range(len(matches))] # 为了去画匹配的情况,创建了一个掩膜
good = []
# ratio test as per Lowe's paper
for i, (m, n) in enumerate(matches):
if m.distance < 0.65*n.distance:
good.append(m)
matchesMask[i] = [1, 0]
MIN_MATCH_COUNT = 9
print(len(good))
if len(good) > MIN_MATCH_COUNT:
src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 3)
else:
print('error!!!!!!!!!!!!!!!!!!!!!!!!!!!')
return
# print(M)
return M
def match_colors(im_ref, im_q, im_test):
im_ref_mean_re = im_ref.view(*im_ref.shape[:2], -1)
im_q_mean_re = im_q.view(*im_q.shape[:2], -1)
# Estimate color transformation matrix by minimizing the least squares error
c_mat_all = []
for ir, iq in zip(im_ref_mean_re, im_q_mean_re):
c = torch.linalg.lstsq(iq.t(), ir.t())
c = c.solution[:im_ref_mean_re.size(1)]
c_mat_all.append(c)
c_mat = torch.stack(c_mat_all, dim=0)
# Apply the transformation to test image
im_test_re = im_test.view(*im_test.shape[:2], -1)
im_t_conv = torch.matmul(im_test_re.permute(0, 2, 1), c_mat).permute(0, 2, 1)
im_t_conv = im_t_conv.view(im_test.shape)
return im_t_conv
def color_correction(gt, in_put, output, scale_factor=2):
# ds_gt = F.interpolate(gt, scale_factor=1.0 / scale_factor, mode='bilinear', align_corners=False, recompute_scale_factor=True)
output_cor = match_channel_colors(gt, in_put, output)
return output_cor
def match_channel_colors(im_ref, im_q, im_test):
im_ref_reshape = im_ref.view(*im_ref.shape[:2], -1)
im_q_reshape = im_q.view(*im_q.shape[:2], -1)
im_test_reshape = im_test.view(*im_test.shape[:2], -1)
# Estimate color transformation matrix by minimizing the least squares error
im_t_conv_list = []
for i in range(im_ref.size(1)):
c_mat_all = []
for ir_batch, iq_batch in zip(im_ref_reshape[:, i:i+1, :], im_q_reshape[:, i:i+1, :]):
c = torch.linalg.lstsq(iq_batch.t(), ir_batch.t())
c = c.solution[:1]
c_mat_all.append(c)
c_mat = torch.stack(c_mat_all, dim=0)
# Apply the transformation to test image
im_t_conv = torch.matmul(im_test_reshape[:, i:i+1, :].permute(0, 2, 1), c_mat).permute(0, 2, 1)
im_t_conv = im_t_conv.view(*im_t_conv.shape[:2], *im_test.shape[-2:])
im_t_conv_list.append(im_t_conv)
im_t_conv = torch.cat(im_t_conv_list, dim=1)
return im_t_conv
def img2tensor(imgs, bgr2rgb=True, float32=True):
"""Numpy array to tensor.
Args:
imgs (list[ndarray] | ndarray): Input images.
bgr2rgb (bool): Whether to change bgr to rgb.
float32 (bool): Whether to change to float32.
Returns:
list[tensor] | tensor: Tensor images. If returned results only have
one element, just return tensor.
"""
def _totensor(img, bgr2rgb, float32):
if img.shape[2] == 3 and bgr2rgb:
if img.dtype == 'float64':
img = img.astype('float32')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = torch.from_numpy(img.transpose(2, 0, 1))
if float32:
img = img.float()
return img
if isinstance(imgs, list):
return [_totensor(img, bgr2rgb, float32) for img in imgs]
else:
return _totensor(imgs, bgr2rgb, float32)
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
"""Convert torch Tensors into image numpy arrays.
After clamping to [min, max], values will be normalized to [0, 1].
Args:
tensor (Tensor or list[Tensor]): Accept shapes:
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
2) 3D Tensor of shape (3/1 x H x W);
3) 2D Tensor of shape (H x W).
Tensor channel should be in RGB order.
rgb2bgr (bool): Whether to change rgb to bgr.
out_type (numpy type): output types. If ``np.uint8``, transform outputs
to uint8 type with range [0, 255]; otherwise, float type with
range [0, 1]. Default: ``np.uint8``.
min_max (tuple[int]): min and max values for clamp.
Returns:
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
shape (H x W). The channel order is BGR.
"""
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
if torch.is_tensor(tensor):
tensor = [tensor]
result = []
for _tensor in tensor:
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
n_dim = _tensor.dim()
if n_dim == 4:
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
img_np = img_np.transpose(1, 2, 0)
if rgb2bgr:
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
elif n_dim == 3:
img_np = _tensor.numpy()
img_np = img_np.transpose(1, 2, 0)
if img_np.shape[2] == 1: # gray image
img_np = np.squeeze(img_np, axis=2)
else:
if rgb2bgr:
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
elif n_dim == 2:
img_np = _tensor.numpy()
else:
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}')
if out_type == np.uint8:
# Unlike MATLAB, numpy.unit8() WILL NOT round by default.
img_np = (img_np * 255.0).round()
img_np = img_np.astype(out_type)
result.append(img_np)
if len(result) == 1:
result = result[0]
return result