NPRC24 / IVL /Grayness_Index.py
Artyom
IVL
e91104d verified
raw
history blame
3.72 kB
import cv2
import numpy as np
import matplotlib.pyplot as plt
import sys
def DerivGauss(im, sigma=0.5):
gaussian_die_off = 0.000001
var = sigma ** 2
# compute filter width
width = None
for i in range(1, 51):
if np.exp(-(i ** 2) / (2 * var)) > gaussian_die_off:
width = i
if width is None:
width = 1
# create filter (derivative of Gaussian filter)
x = np.arange(-width, width + 1)
y = np.arange(-width, width + 1)
coordinates = np.meshgrid(x, y)
x = coordinates[0]
y = coordinates[1]
derivate_gaussian_2D = -x * \
np.exp(-(x * x + y * y) / (2 * var)) / (var * np.pi)
# apply filter and return magnitude
ax = cv2.filter2D(im, -1, derivate_gaussian_2D)
ay = cv2.filter2D(im, -1, np.transpose(derivate_gaussian_2D))
magnitude = np.sqrt((ax ** 2) + (ay ** 2))
return magnitude
def GPconstancy_GI(im, gray_pixels, delta_th=10**(-4)):
# mask saturated pixels and mask very dark pixels
mask = np.logical_or(np.max(im, axis=2) >= 0.95,
np.sum(im, axis=2) <= 0.0315)
# remove noise with mean filter
# mean_kernel = np.ones((7, 7), np.float32) / 7**2
# im = cv2.filter2D(im, -1, mean_kernel)
# decompose rgb values
r = im[:, :, 0]
g = im[:, :, 1]
b = im[:, :, 2]
# mask 0 elements
mask = np.logical_or.reduce((mask, r == 0, g == 0, b == 0))
# replace 0 values with machine epsilon
eps = np.finfo(np.float32).eps
r[r == 0] = eps
g[g == 0] = eps
b[b == 0] = eps
norm = r + g + b
# mask low contrast pixels
delta_r = DerivGauss(r)
delta_g = DerivGauss(g)
delta_b = DerivGauss(b)
mask = np.logical_or(mask, np.logical_and.reduce(
(delta_r <= delta_th, delta_g <= delta_th, delta_b <= delta_th)))
# compute colors in log domain, only red and blue
log_r = np.log(r) - np.log(norm)
log_b = np.log(b) - np.log(norm)
# mask low contrast pixels in the log domain
delta_log_r = DerivGauss(log_r)
delta_log_b = DerivGauss(log_b)
mask = np.logical_or.reduce(
(mask, delta_log_r == np.inf, delta_log_b == np.inf))
# normalize each channel in log domain
data = np.concatenate(
(np.reshape(delta_log_r, (-1, 1)), np.reshape(delta_log_b, (-1, 1))), axis=1)
mink_norm = 2
norm2_data = np.sum(data ** mink_norm, axis=1) ** (1 / mink_norm)
map_uniquelight = np.reshape(norm2_data, delta_log_r.shape)
# make masked pixels to max value
map_uniquelight[mask] = np.max(map_uniquelight)
# denoise
# map_uniquelight = cv2.filter2D(map_uniquelight, -1, mean_kernel)
# filter using map_uniquelight
gray_index_unique = map_uniquelight
sort_unique = np.sort(gray_index_unique.flatten())
gindex_unique = np.full(gray_index_unique.shape, False, dtype=bool)
gindex_unique[gray_index_unique <= sort_unique[gray_pixels - 1]] = True
choosen_pixels = im[gindex_unique]
mean = np.mean(choosen_pixels, axis=0)
result = mean / np.apply_along_axis(np.linalg.norm, 0, mean)
return result
if __name__ == "__main__":
# read image and convert to 0 1
im_path = 'example.png'
im = cv2.cvtColor(cv2.imread(im_path), cv2.COLOR_BGR2RGB)
im = np.float32(im) / 255
tot_pixels = im.shape[0] * im.shape[1]
# compute number of gray pixels
n = 0.1 # 0.01%
num_gray_pixels = int(np.floor(n * tot_pixels / 100))
# compute global illuminant values
gt = np.array([0.6918, 0.6635, 0.2850])
lumTriplet = GPconstancy_GI(im, num_gray_pixels, 10**(-4))
# show results and angular error w.r.t gt
print(lumTriplet)
print(np.arccos(np.dot(lumTriplet, gt)) * 180 / np.pi)