File size: 31,481 Bytes
a7e5b12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
---

language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: Item 3—Legal Proceedings See discussion of Legal Proceedings in
    Note 10 to the consolidated financial statements included in Item 8 of this Report.
  sentences:
  - How much did the company's finance lease obligations total as of December 31,
    2023?
  - What do Note 10 and Item 8 of the report encompass?
  - What was the basic earnings per common share attributable to Comcast Corporation
    shareholders in 2023?
- source_sentence: Our quarterly Insurance segment earnings and operating cash flows
    are impacted by the Medicare Part D benefit Grant program, the changing membership
    composition, and the multistage plan period starting annually on January 1. These
    plan designs generally result in us sharing a greater portion of the responsibility
    for total prescription drug costs in the early stages and less in the latter stages.
  sentences:
  - What are the two main categories into which Ford Motor Company classifies its
    costs and expenses, excluding those related to Ford Credit?
  - How does the benefit design of Medicare Part D impact the quarterly insurance
    segment earnings and operating cash flows?
  - What basis is used to record HTM investment securities in Schwab's financial statements?
- source_sentence: Operating Profit in the Wizards of the Coast and Digital Gaming
    segment decreased 2% to $538.3 million.
  sentences:
  - How much did the Wizards of the Coast and Digital Gaming segment's operating profit
    change in 2022?
  - What factors are considered in evaluating the lifetime losses for most loans and
    receivables?
  - How did the loss on certain U.S. affiliates impact the Company's effective tax
    rate in the fiscal fourth quarter of 2021?
- source_sentence: In 2023, the net earnings of Johnson & Johnson were $35,153 million.
    The company also registered cash dividends paid amounting to $11,770 million for
    the year, priced at $4.70 per share.
  sentences:
  - What was the postpaid churn rate for AT&T Inc. in 2023?
  - What was the GAAP net revenue for the fiscal year ended October 31, 2023?
  - What were the total net earnings of Johnson & Johnson in the year 2023?
- source_sentence: During fiscal 2022, GameStop Corp increased its valuation allowances
    by approximately $70.2 million in various jurisdictions.
  sentences:
  - How much did GameStop Corp's valuation allowances increase during fiscal 2022?
  - How does Gilead ensure an inclusive and diverse workforce?
  - What factors are considered in determining the estimated future warranty costs
    for connected fitness and Precor branded fitness products?
pipeline_tag: sentence-similarity
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.7185714285714285
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.83
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8714285714285714
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.91
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7185714285714285
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27666666666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17428571428571427
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.091
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7185714285714285
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.83
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8714285714285714
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.91
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8137967516958747
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7830442176870747
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7866777593387027
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.7114285714285714
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8314285714285714
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8728571428571429
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9142857142857143
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7114285714285714
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27714285714285714
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17457142857142854
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09142857142857141
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7114285714285714
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8314285714285714
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8728571428571429
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9142857142857143
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8123538841130576
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7798667800453513
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7831580648041446
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.7
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8285714285714286
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8614285714285714
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9042857142857142
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2761904761904762
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17228571428571426
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09042857142857143
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8285714285714286
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8614285714285714
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9042857142857142
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8043112987059042
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7721706349206346
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7759026470022171
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.6857142857142857
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8071428571428572
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8571428571428571
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8971428571428571
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6857142857142857
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.26904761904761904
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1714285714285714
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0897142857142857
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6857142857142857
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8071428571428572
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8571428571428571
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8971428571428571
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.79087795854059
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7568854875283447
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7608935817550728
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.66
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7757142857142857
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8128571428571428
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8671428571428571
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.66
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.25857142857142856
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16257142857142853
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0867142857142857
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.66
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7757142857142857
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8128571428571428
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8671428571428571
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7616045249840884
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7281247165532877
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7330922421864847
      name: Cosine Map@100
---


# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

  (2): Normalize()

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("cristuf/bge-base-financial-matryoshka")

# Run inference

sentences = [

    'During fiscal 2022, GameStop Corp increased its valuation allowances by approximately $70.2 million in various jurisdictions.',

    "How much did GameStop Corp's valuation allowances increase during fiscal 2022?",

    'How does Gilead ensure an inclusive and diverse workforce?',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7186     |

| cosine_accuracy@3   | 0.83       |
| cosine_accuracy@5   | 0.8714     |

| cosine_accuracy@10  | 0.91       |
| cosine_precision@1  | 0.7186     |

| cosine_precision@3  | 0.2767     |
| cosine_precision@5  | 0.1743     |

| cosine_precision@10 | 0.091      |
| cosine_recall@1     | 0.7186     |

| cosine_recall@3     | 0.83       |
| cosine_recall@5     | 0.8714     |

| cosine_recall@10    | 0.91       |
| cosine_ndcg@10      | 0.8138     |

| cosine_mrr@10       | 0.783      |
| **cosine_map@100**  | **0.7867** |



#### Information Retrieval

* Dataset: `dim_512`

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)



| Metric              | Value      |

|:--------------------|:-----------|

| cosine_accuracy@1   | 0.7114     |

| cosine_accuracy@3   | 0.8314     |

| cosine_accuracy@5   | 0.8729     |

| cosine_accuracy@10  | 0.9143     |

| cosine_precision@1  | 0.7114     |

| cosine_precision@3  | 0.2771     |

| cosine_precision@5  | 0.1746     |

| cosine_precision@10 | 0.0914     |

| cosine_recall@1     | 0.7114     |

| cosine_recall@3     | 0.8314     |

| cosine_recall@5     | 0.8729     |

| cosine_recall@10    | 0.9143     |

| cosine_ndcg@10      | 0.8124     |

| cosine_mrr@10       | 0.7799     |

| **cosine_map@100**  | **0.7832** |



#### Information Retrieval

* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7        |

| cosine_accuracy@3   | 0.8286     |
| cosine_accuracy@5   | 0.8614     |

| cosine_accuracy@10  | 0.9043     |
| cosine_precision@1  | 0.7        |

| cosine_precision@3  | 0.2762     |
| cosine_precision@5  | 0.1723     |

| cosine_precision@10 | 0.0904     |
| cosine_recall@1     | 0.7        |

| cosine_recall@3     | 0.8286     |
| cosine_recall@5     | 0.8614     |

| cosine_recall@10    | 0.9043     |
| cosine_ndcg@10      | 0.8043     |

| cosine_mrr@10       | 0.7722     |
| **cosine_map@100**  | **0.7759** |



#### Information Retrieval

* Dataset: `dim_128`

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)



| Metric              | Value      |

|:--------------------|:-----------|

| cosine_accuracy@1   | 0.6857     |

| cosine_accuracy@3   | 0.8071     |

| cosine_accuracy@5   | 0.8571     |

| cosine_accuracy@10  | 0.8971     |

| cosine_precision@1  | 0.6857     |

| cosine_precision@3  | 0.269      |

| cosine_precision@5  | 0.1714     |

| cosine_precision@10 | 0.0897     |

| cosine_recall@1     | 0.6857     |

| cosine_recall@3     | 0.8071     |

| cosine_recall@5     | 0.8571     |

| cosine_recall@10    | 0.8971     |

| cosine_ndcg@10      | 0.7909     |

| cosine_mrr@10       | 0.7569     |

| **cosine_map@100**  | **0.7609** |



#### Information Retrieval

* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.66       |

| cosine_accuracy@3   | 0.7757     |
| cosine_accuracy@5   | 0.8129     |

| cosine_accuracy@10  | 0.8671     |
| cosine_precision@1  | 0.66       |

| cosine_precision@3  | 0.2586     |
| cosine_precision@5  | 0.1626     |

| cosine_precision@10 | 0.0867     |
| cosine_recall@1     | 0.66       |

| cosine_recall@3     | 0.7757     |
| cosine_recall@5     | 0.8129     |

| cosine_recall@10    | 0.8671     |
| cosine_ndcg@10      | 0.7616     |

| cosine_mrr@10       | 0.7281     |
| **cosine_map@100**  | **0.7331** |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### Unnamed Dataset





* Size: 6,300 training samples

* Columns: <code>positive</code> and <code>anchor</code>

* Approximate statistics based on the first 1000 samples:

  |         | positive                                                                           | anchor                                                                            |

  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|

  | type    | string                                                                             | string                                                                            |

  | details | <ul><li>min: 8 tokens</li><li>mean: 46.36 tokens</li><li>max: 439 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 20.41 tokens</li><li>max: 51 tokens</li></ul> |

* Samples:

  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | anchor                                                                                                                  |

  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------|

  | <code>Japan's revenue for the year 2023 reached 2,367.0 million.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <code>What was the revenue attributed to Japan in the year 2023?</code>                                                 |

  | <code>Our four reportable segments are: •the Data Center segment, which primarily includes server CPUs, GPUs, APUs, DPUs, FPGAs, SmartNICs, AI accelerators and Adaptive SoC products for data centers; •the Client segment, which primarily includes CPUs, APUs, and chipsets for desktop, notebook and handheld personal computers; •the Gaming segment, which primarily includes discrete GPUs, semi-custom SoC products and development services; and •the Embedded segment, which primarily includes embedded CPUs, GPUs, APUs, FPGAs, SOMs, and Adaptive SoC products.</code> | <code>What are the different segments that AMD reports financially?</code>                                              |

  | <code>For detailed information about the company's legal proceedings, see Note 4 to the consolidated financial statements, included under the caption 'Contingencies' in the Annual Report on Form 10-K.</code>                                                                                                                                                                                                                                                                                                                                                                     | <code>Where can detailed information about the company's legal proceedings be found in its financial statements?</code> |

* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:

  ```json

  {

      "loss": "MultipleNegativesRankingLoss",

      "matryoshka_dims": [

          768,

          512,

          256,

          128,

          64

      ],

      "matryoshka_weights": [

          1,

          1,

          1,

          1,

          1

      ],

      "n_dims_per_step": -1

  }

  ```



### Training Hyperparameters

#### Non-Default Hyperparameters



- `eval_strategy`: epoch

- `per_device_train_batch_size`: 32

- `per_device_eval_batch_size`: 16

- `gradient_accumulation_steps`: 16

- `learning_rate`: 2e-05

- `num_train_epochs`: 4

- `lr_scheduler_type`: cosine

- `warmup_ratio`: 0.1

- `bf16`: True

- `tf32`: True

- `load_best_model_at_end`: True

- `optim`: adamw_torch_fused

- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False

- `eval_strategy`: epoch

- `prediction_loss_only`: True

- `per_device_train_batch_size`: 32

- `per_device_eval_batch_size`: 16

- `per_gpu_train_batch_size`: None

- `per_gpu_eval_batch_size`: None

- `gradient_accumulation_steps`: 16

- `eval_accumulation_steps`: None

- `learning_rate`: 2e-05

- `weight_decay`: 0.0

- `adam_beta1`: 0.9

- `adam_beta2`: 0.999

- `adam_epsilon`: 1e-08

- `max_grad_norm`: 1.0

- `num_train_epochs`: 4

- `max_steps`: -1

- `lr_scheduler_type`: cosine

- `lr_scheduler_kwargs`: {}

- `warmup_ratio`: 0.1

- `warmup_steps`: 0

- `log_level`: passive

- `log_level_replica`: warning

- `log_on_each_node`: True

- `logging_nan_inf_filter`: True

- `save_safetensors`: True

- `save_on_each_node`: False

- `save_only_model`: False

- `restore_callback_states_from_checkpoint`: False

- `no_cuda`: False

- `use_cpu`: False

- `use_mps_device`: False

- `seed`: 42

- `data_seed`: None

- `jit_mode_eval`: False

- `use_ipex`: False

- `bf16`: True

- `fp16`: False

- `fp16_opt_level`: O1

- `half_precision_backend`: auto

- `bf16_full_eval`: False

- `fp16_full_eval`: False

- `tf32`: True

- `local_rank`: 0

- `ddp_backend`: None

- `tpu_num_cores`: None

- `tpu_metrics_debug`: False

- `debug`: []

- `dataloader_drop_last`: False

- `dataloader_num_workers`: 0

- `dataloader_prefetch_factor`: None

- `past_index`: -1

- `disable_tqdm`: False

- `remove_unused_columns`: True

- `label_names`: None

- `load_best_model_at_end`: True

- `ignore_data_skip`: False

- `fsdp`: []

- `fsdp_min_num_params`: 0

- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None

- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}

- `deepspeed`: None

- `label_smoothing_factor`: 0.0

- `optim`: adamw_torch_fused

- `optim_args`: None

- `adafactor`: False

- `group_by_length`: False

- `length_column_name`: length

- `ddp_find_unused_parameters`: None

- `ddp_bucket_cap_mb`: None

- `ddp_broadcast_buffers`: False

- `dataloader_pin_memory`: True

- `dataloader_persistent_workers`: False

- `skip_memory_metrics`: True

- `use_legacy_prediction_loop`: False

- `push_to_hub`: False

- `resume_from_checkpoint`: None

- `hub_model_id`: None

- `hub_strategy`: every_save

- `hub_private_repo`: False

- `hub_always_push`: False

- `gradient_checkpointing`: False

- `gradient_checkpointing_kwargs`: None

- `include_inputs_for_metrics`: False

- `eval_do_concat_batches`: True

- `fp16_backend`: auto

- `push_to_hub_model_id`: None

- `push_to_hub_organization`: None

- `mp_parameters`: 

- `auto_find_batch_size`: False

- `full_determinism`: False

- `torchdynamo`: None

- `ray_scope`: last

- `ddp_timeout`: 1800

- `torch_compile`: False

- `torch_compile_backend`: None

- `torch_compile_mode`: None

- `dispatch_batches`: None

- `split_batches`: None

- `include_tokens_per_second`: False

- `include_num_input_tokens_seen`: False

- `neftune_noise_alpha`: None

- `optim_target_modules`: None

- `batch_eval_metrics`: False

- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional



</details>



### Training Logs

| Epoch      | Step   | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |

|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|

| 0.8122     | 10     | 1.5267        | -                      | -                      | -                      | -                     | -                      |

| 0.9746     | 12     | -             | 0.7446                 | 0.7639                 | 0.7765                 | 0.7039                | 0.7725                 |

| 1.6244     | 20     | 0.6742        | -                      | -                      | -                      | -                     | -                      |

| 1.9492     | 24     | -             | 0.7606                 | 0.7795                 | 0.7828                 | 0.7297                | 0.7839                 |

| 2.4365     | 30     | 0.4469        | -                      | -                      | -                      | -                     | -                      |

| **2.9239** | **36** | **-**         | **0.7643**             | **0.7758**             | **0.7834**             | **0.7332**            | **0.7845**             |
| 3.2487     | 40     | 0.3712        | -                      | -                      | -                      | -                     | -                      |
| 3.8985     | 48     | -             | 0.7609                 | 0.7759                 | 0.7832                 | 0.7331                | 0.7867                 |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.8
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```

#### MatryoshkaLoss
```bibtex

@misc{kusupati2024matryoshka,

    title={Matryoshka Representation Learning}, 

    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},

    year={2024},

    eprint={2205.13147},

    archivePrefix={arXiv},

    primaryClass={cs.LG}

}

```

#### MultipleNegativesRankingLoss
```bibtex

@misc{henderson2017efficient,

    title={Efficient Natural Language Response Suggestion for Smart Reply}, 

    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},

    year={2017},

    eprint={1705.00652},

    archivePrefix={arXiv},

    primaryClass={cs.CL}

}

```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->