File size: 5,041 Bytes
91f2d31
 
3b043a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91f2d31
 
edb3e5e
 
 
58067e9
 
4eff02a
 
 
 
 
 
edb3e5e
 
 
 
 
 
 
 
27610b5
edb3e5e
 
 
 
0a7f807
edb3e5e
0a7f807
3b043a5
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
---
license: apache-2.0
model-index:
- name: apricot-wildflower-20
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 59.64
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=crumb/apricot-wildflower-20
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 81.76
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=crumb/apricot-wildflower-20
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.38
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=crumb/apricot-wildflower-20
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 41.76
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=crumb/apricot-wildflower-20
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 77.9
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=crumb/apricot-wildflower-20
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 33.97
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=crumb/apricot-wildflower-20
      name: Open LLM Leaderboard
---

# apricot-wildflower-20

This model is the Mistral-7b model finetuned for 1k steps with a combined lm loss and distillation loss on Openwebtext2 with a >=20 reddit score filter with training logits from Mixtral. I'm not going to pretend it was a big project I did it in a dream and woke up and replicated the code without any actual reason, idk how well it fares in benchmarks.

(update: not very good)

| model | avg | arc | hellaswag | mmlu | truthfulqa | winogrande | gsm8k |
| --- | --- | --- | --- | --- | --- | --- | --- |
| apricot-wildflower-20 | 59.74 | 59.64 | 81.76 | 63.38 | 41.76 | 77.9 | 33.97 |
| mistralai/Mistral-7B-v0.1 | 60.97 | 59.98 | 83.31 | 64.16 | 42.15 | 78.37 | 37.83 |


### use
```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "crumb/apricot-wildflower-20"
tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", load_in_8bit=True)

text = "Hello my name is"
inputs = tokenizer(text, return_tensors="pt")

outputs = model.generate(**inputs, max_new_tokens=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
# Hello my name is Katie and I am a 20 year old student from the UK. I am currently studying for a degree in English Literature and Creative Writing at the University of Leeds. I am a huge fan of the Harry Potter series and have been since I was 10 years old. I have read the books countless times and have seen the films many times too. I am a huge fan of the Harry Potter fandom and have been a member of the Harry Potter forums for a few years now. I am also a member of the Harry Potter fan club and have been for a few years now. I
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_crumb__apricot-wildflower-20)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |59.74|
|AI2 Reasoning Challenge (25-Shot)|59.64|
|HellaSwag (10-Shot)              |81.76|
|MMLU (5-Shot)                    |63.38|
|TruthfulQA (0-shot)              |41.76|
|Winogrande (5-shot)              |77.90|
|GSM8k (5-shot)                   |33.97|