File size: 5,041 Bytes
91f2d31 3b043a5 91f2d31 edb3e5e 58067e9 4eff02a edb3e5e 27610b5 edb3e5e 0a7f807 edb3e5e 0a7f807 3b043a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
---
license: apache-2.0
model-index:
- name: apricot-wildflower-20
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 59.64
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=crumb/apricot-wildflower-20
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 81.76
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=crumb/apricot-wildflower-20
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.38
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=crumb/apricot-wildflower-20
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 41.76
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=crumb/apricot-wildflower-20
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.9
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=crumb/apricot-wildflower-20
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 33.97
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=crumb/apricot-wildflower-20
name: Open LLM Leaderboard
---
# apricot-wildflower-20
This model is the Mistral-7b model finetuned for 1k steps with a combined lm loss and distillation loss on Openwebtext2 with a >=20 reddit score filter with training logits from Mixtral. I'm not going to pretend it was a big project I did it in a dream and woke up and replicated the code without any actual reason, idk how well it fares in benchmarks.
(update: not very good)
| model | avg | arc | hellaswag | mmlu | truthfulqa | winogrande | gsm8k |
| --- | --- | --- | --- | --- | --- | --- | --- |
| apricot-wildflower-20 | 59.74 | 59.64 | 81.76 | 63.38 | 41.76 | 77.9 | 33.97 |
| mistralai/Mistral-7B-v0.1 | 60.97 | 59.98 | 83.31 | 64.16 | 42.15 | 78.37 | 37.83 |
### use
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "crumb/apricot-wildflower-20"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", load_in_8bit=True)
text = "Hello my name is"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
# Hello my name is Katie and I am a 20 year old student from the UK. I am currently studying for a degree in English Literature and Creative Writing at the University of Leeds. I am a huge fan of the Harry Potter series and have been since I was 10 years old. I have read the books countless times and have seen the films many times too. I am a huge fan of the Harry Potter fandom and have been a member of the Harry Potter forums for a few years now. I am also a member of the Harry Potter fan club and have been for a few years now. I
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_crumb__apricot-wildflower-20)
| Metric |Value|
|---------------------------------|----:|
|Avg. |59.74|
|AI2 Reasoning Challenge (25-Shot)|59.64|
|HellaSwag (10-Shot) |81.76|
|MMLU (5-Shot) |63.38|
|TruthfulQA (0-shot) |41.76|
|Winogrande (5-shot) |77.90|
|GSM8k (5-shot) |33.97|
|