File size: 12,892 Bytes
648d1ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
license: apache-2.0
base_model: google/electra-base-discriminator
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: electra-base-discriminator-finetuned-ner-cadec
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# electra-base-discriminator-finetuned-ner-cadec

This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4364
- Precision: 0.3437
- Recall: 0.2772
- F1: 0.3068
- Accuracy: 0.8714
- Adr Precision: 0.2406
- Adr Recall: 0.2220
- Adr F1: 0.2309
- Disease Precision: 0.0
- Disease Recall: 0.0
- Disease F1: 0.0
- Drug Precision: 0.7063
- Drug Recall: 0.6121
- Drug F1: 0.6558
- Finding Precision: 0.0
- Finding Recall: 0.0
- Finding F1: 0.0
- Symptom Precision: 0.0
- Symptom Recall: 0.0
- Symptom F1: 0.0
- B-adr Precision: 0.5426
- B-adr Recall: 0.3666
- B-adr F1: 0.4376
- B-disease Precision: 0.0
- B-disease Recall: 0.0
- B-disease F1: 0.0
- B-drug Precision: 0.9375
- B-drug Recall: 0.6364
- B-drug F1: 0.7581
- B-finding Precision: 0.0
- B-finding Recall: 0.0
- B-finding F1: 0.0
- B-symptom Precision: 0.0
- B-symptom Recall: 0.0
- B-symptom F1: 0.0
- I-adr Precision: 0.1906
- I-adr Recall: 0.1738
- I-adr F1: 0.1818
- I-disease Precision: 0.0
- I-disease Recall: 0.0
- I-disease F1: 0.0
- I-drug Precision: 0.7343
- I-drug Recall: 0.6442
- I-drug F1: 0.6863
- I-finding Precision: 0.0
- I-finding Recall: 0.0
- I-finding F1: 0.0
- I-symptom Precision: 0.0
- I-symptom Recall: 0.0
- I-symptom F1: 0.0
- Macro Avg F1: 0.2064
- Weighted Avg F1: 0.3770

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy | Adr Precision | Adr Recall | Adr F1 | Disease Precision | Disease Recall | Disease F1 | Drug Precision | Drug Recall | Drug F1 | Finding Precision | Finding Recall | Finding F1 | Symptom Precision | Symptom Recall | Symptom F1 | B-adr Precision | B-adr Recall | B-adr F1 | B-disease Precision | B-disease Recall | B-disease F1 | B-drug Precision | B-drug Recall | B-drug F1 | B-finding Precision | B-finding Recall | B-finding F1 | B-symptom Precision | B-symptom Recall | B-symptom F1 | I-adr Precision | I-adr Recall | I-adr F1 | I-disease Precision | I-disease Recall | I-disease F1 | I-drug Precision | I-drug Recall | I-drug F1 | I-finding Precision | I-finding Recall | I-finding F1 | I-symptom Precision | I-symptom Recall | I-symptom F1 | Macro Avg F1 | Weighted Avg F1 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------------:|:----------:|:------:|:-----------------:|:--------------:|:----------:|:--------------:|:-----------:|:-------:|:-----------------:|:--------------:|:----------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------:|:---------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:---------------:|:------------:|:--------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------:|:---------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:------------:|:---------------:|
| No log        | 1.0   | 127  | 0.8387          | 0.0       | 0.0    | 0.0    | 0.7902   | 0.0           | 0.0        | 0.0    | 0.0               | 0.0            | 0.0        | 0.0            | 0.0         | 0.0     | 0.0               | 0.0            | 0.0        | 0.0               | 0.0            | 0.0        | 0.0             | 0.0          | 0.0      | 0.0                 | 0.0              | 0.0          | 0.0              | 0.0           | 0.0       | 0.0                 | 0.0              | 0.0          | 0.0                 | 0.0              | 0.0          | 0.0             | 0.0          | 0.0      | 0.0                 | 0.0              | 0.0          | 0.0              | 0.0           | 0.0       | 0.0                 | 0.0              | 0.0          | 0.0                 | 0.0              | 0.0          | 0.0          | 0.0             |
| No log        | 2.0   | 254  | 0.8358          | 0.0       | 0.0    | 0.0    | 0.7902   | 0.0           | 0.0        | 0.0    | 0.0               | 0.0            | 0.0        | 0.0            | 0.0         | 0.0     | 0.0               | 0.0            | 0.0        | 0.0               | 0.0            | 0.0        | 0.0             | 0.0          | 0.0      | 0.0                 | 0.0              | 0.0          | 0.0              | 0.0           | 0.0       | 0.0                 | 0.0              | 0.0          | 0.0                 | 0.0              | 0.0          | 0.0             | 0.0          | 0.0      | 0.0                 | 0.0              | 0.0          | 0.0              | 0.0           | 0.0       | 0.0                 | 0.0              | 0.0          | 0.0                 | 0.0              | 0.0          | 0.0          | 0.0             |
| No log        | 3.0   | 381  | 0.7415          | 0.0782    | 0.0512 | 0.0619 | 0.7906   | 0.0782        | 0.0752     | 0.0767 | 0.0               | 0.0            | 0.0        | 0.0            | 0.0         | 0.0     | 0.0               | 0.0            | 0.0        | 0.0               | 0.0            | 0.0        | 0.0             | 0.0          | 0.0      | 0.0                 | 0.0              | 0.0          | 0.0              | 0.0           | 0.0       | 0.0                 | 0.0              | 0.0          | 0.0                 | 0.0              | 0.0          | 0.0172          | 0.0203       | 0.0186   | 0.0                 | 0.0              | 0.0          | 0.0              | 0.0           | 0.0       | 0.0                 | 0.0              | 0.0          | 0.0                 | 0.0              | 0.0          | 0.0019       | 0.0057          |
| 0.8638        | 4.0   | 508  | 0.6493          | 0.1417    | 0.0637 | 0.0879 | 0.8160   | 0.1417        | 0.0936     | 0.1127 | 0.0               | 0.0            | 0.0        | 0.0            | 0.0         | 0.0     | 0.0               | 0.0            | 0.0        | 0.0               | 0.0            | 0.0        | 0.0             | 0.0          | 0.0      | 0.0                 | 0.0              | 0.0          | 0.0              | 0.0           | 0.0       | 0.0                 | 0.0              | 0.0          | 0.0                 | 0.0              | 0.0          | 0.0253          | 0.0203       | 0.0225   | 0.0                 | 0.0              | 0.0          | 0.0              | 0.0           | 0.0       | 0.0                 | 0.0              | 0.0          | 0.0                 | 0.0              | 0.0          | 0.0023       | 0.0069          |
| 0.8638        | 5.0   | 635  | 0.5528          | 0.3498    | 0.2122 | 0.2642 | 0.8489   | 0.2037        | 0.1431     | 0.1681 | 0.0               | 0.0            | 0.0        | 0.8932         | 0.5576      | 0.6866  | 0.0               | 0.0            | 0.0        | 0.0               | 0.0            | 0.0        | 0.5104          | 0.0940       | 0.1588   | 0.0                 | 0.0              | 0.0          | 0.9444           | 0.4121        | 0.5738    | 0.0                 | 0.0              | 0.0          | 0.0                 | 0.0              | 0.0          | 0.0760          | 0.0587       | 0.0662   | 0.0                 | 0.0              | 0.0          | 0.68             | 0.4172        | 0.5171    | 0.0                 | 0.0              | 0.0          | 0.0                 | 0.0              | 0.0          | 0.1316       | 0.2012          |
| 0.8638        | 6.0   | 762  | 0.4846          | 0.2864    | 0.2310 | 0.2557 | 0.8587   | 0.1698        | 0.1670     | 0.1684 | 0.0               | 0.0            | 0.0        | 0.8545         | 0.5697      | 0.6836  | 0.0               | 0.0            | 0.0        | 0.0               | 0.0            | 0.0        | 0.5070          | 0.2764       | 0.3578   | 0.0                 | 0.0              | 0.0          | 0.9604           | 0.5879        | 0.7293    | 0.0                 | 0.0              | 0.0          | 0.0                 | 0.0              | 0.0          | 0.1170          | 0.1151       | 0.1160   | 0.0                 | 0.0              | 0.0          | 0.8818           | 0.5951        | 0.7106    | 0.0                 | 0.0              | 0.0          | 0.0                 | 0.0              | 0.0          | 0.1914       | 0.3276          |
| 0.8638        | 7.0   | 889  | 0.4610          | 0.3376    | 0.2622 | 0.2952 | 0.8679   | 0.2253        | 0.2092     | 0.2169 | 0.0               | 0.0            | 0.0        | 0.8276         | 0.5818      | 0.6833  | 0.0               | 0.0            | 0.0        | 0.0               | 0.0            | 0.0        | 0.5228          | 0.2860       | 0.3697   | 0.0                 | 0.0              | 0.0          | 0.9519           | 0.6           | 0.7361    | 0.0                 | 0.0              | 0.0          | 0.0                 | 0.0              | 0.0          | 0.1734          | 0.1648       | 0.1690   | 0.0                 | 0.0              | 0.0          | 0.8696           | 0.6135        | 0.7194    | 0.0                 | 0.0              | 0.0          | 0.0                 | 0.0              | 0.0          | 0.1994       | 0.3498          |
| 0.5419        | 8.0   | 1016 | 0.4499          | 0.2983    | 0.2697 | 0.2833 | 0.8656   | 0.1976        | 0.2128     | 0.2049 | 0.0               | 0.0            | 0.0        | 0.7299         | 0.6061      | 0.6623  | 0.0               | 0.0            | 0.0        | 0.0               | 0.0            | 0.0        | 0.4803          | 0.3743       | 0.4207   | 0.0                 | 0.0              | 0.0          | 0.9369           | 0.6303        | 0.7536    | 0.0                 | 0.0              | 0.0          | 0.0                 | 0.0              | 0.0          | 0.1738          | 0.1828       | 0.1782   | 0.0                 | 0.0              | 0.0          | 0.7518           | 0.6319        | 0.6867    | 0.0                 | 0.0              | 0.0          | 0.0                 | 0.0              | 0.0          | 0.2039       | 0.3693          |
| 0.5419        | 9.0   | 1143 | 0.4511          | 0.3544    | 0.2734 | 0.3087 | 0.8700   | 0.2418        | 0.2165     | 0.2285 | 0.0               | 0.0            | 0.0        | 0.7769         | 0.6121      | 0.6847  | 0.0               | 0.0            | 0.0        | 0.0               | 0.0            | 0.0        | 0.5203          | 0.3436       | 0.4139   | 0.0                 | 0.0              | 0.0          | 0.9211           | 0.6364        | 0.7527    | 0.0                 | 0.0              | 0.0          | 0.0                 | 0.0              | 0.0          | 0.2041          | 0.1783       | 0.1904   | 0.0                 | 0.0              | 0.0          | 0.7907           | 0.6258        | 0.6986    | 0.0                 | 0.0              | 0.0          | 0.0                 | 0.0              | 0.0          | 0.2056       | 0.3718          |
| 0.5419        | 10.0  | 1270 | 0.4364          | 0.3437    | 0.2772 | 0.3068 | 0.8714   | 0.2406        | 0.2220     | 0.2309 | 0.0               | 0.0            | 0.0        | 0.7063         | 0.6121      | 0.6558  | 0.0               | 0.0            | 0.0        | 0.0               | 0.0            | 0.0        | 0.5426          | 0.3666       | 0.4376   | 0.0                 | 0.0              | 0.0          | 0.9375           | 0.6364        | 0.7581    | 0.0                 | 0.0              | 0.0          | 0.0                 | 0.0              | 0.0          | 0.1906          | 0.1738       | 0.1818   | 0.0                 | 0.0              | 0.0          | 0.7343           | 0.6442        | 0.6863    | 0.0                 | 0.0              | 0.0          | 0.0                 | 0.0              | 0.0          | 0.2064       | 0.3770          |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0