--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - automatic-speech-recognition - BembaSpeech - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-bem-bembaspeech-model results: [] --- # w2v-bert-bem-bembaspeech-model This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the BEMBASPEECH - BEM dataset. It achieves the following results on the evaluation set: - Loss: 0.2620 - Wer: 0.5353 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.7066 | 0.2811 | 200 | 0.5066 | 0.7648 | | 0.5538 | 0.5622 | 400 | 0.4313 | 0.7232 | | 0.4574 | 0.8433 | 600 | 0.4102 | 0.6956 | | 0.4084 | 1.1244 | 800 | 0.3529 | 0.6276 | | 0.388 | 1.4055 | 1000 | 0.3004 | 0.5724 | | 0.3803 | 1.6866 | 1200 | 0.3376 | 0.6477 | | 0.367 | 1.9677 | 1400 | 0.2911 | 0.5802 | | 0.3168 | 2.2488 | 1600 | 0.3106 | 0.5725 | | 0.3227 | 2.5299 | 1800 | 0.2654 | 0.5348 | | 0.3111 | 2.8110 | 2000 | 0.2621 | 0.5494 | | 0.2823 | 3.0921 | 2200 | 0.2665 | 0.5422 | | 0.2603 | 3.3732 | 2400 | 0.2623 | 0.5174 | | 0.2735 | 3.6543 | 2600 | 0.2620 | 0.5353 | | 0.2666 | 3.9353 | 2800 | 0.2753 | 0.5450 | | 0.2248 | 4.2164 | 3000 | 0.2881 | 0.5818 | | 0.2408 | 4.4975 | 3200 | 0.2748 | 0.5324 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0