--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - automatic-speech-recognition - BembaSpeech - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-bem-bl results: [] --- # w2v-bert-bem-bl This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the BEMBASPEECH - BEM dataset. It achieves the following results on the evaluation set: - Loss: 0.2136 - Wer: 0.4539 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.5344 | 0.7027 | 500 | 0.5448 | 0.7379 | | 0.4242 | 1.4055 | 1000 | 0.3055 | 0.6025 | | 0.3603 | 2.1082 | 1500 | 0.2693 | 0.5385 | | 0.3144 | 2.8110 | 2000 | 0.2683 | 0.5529 | | 0.2656 | 3.5137 | 2500 | 0.2472 | 0.5258 | | 0.2311 | 4.2164 | 3000 | 0.2352 | 0.5026 | | 0.2106 | 4.9192 | 3500 | 0.2327 | 0.5003 | | 0.1816 | 5.6219 | 4000 | 0.2298 | 0.4987 | | 0.1432 | 6.3247 | 4500 | 0.2178 | 0.4686 | | 0.1431 | 7.0274 | 5000 | 0.2172 | 0.4747 | | 0.1069 | 7.7301 | 5500 | 0.2136 | 0.4539 | | 0.0767 | 8.4329 | 6000 | 0.2270 | 0.4403 | | 0.0667 | 9.1356 | 6500 | 0.2375 | 0.4385 | | 0.0468 | 9.8384 | 7000 | 0.2403 | 0.4353 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1