csikasote commited on
Commit
4d95927
1 Parent(s): 2d9f7bf

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: wav2vec2-large-xls-r-1b-bemba-fds
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # wav2vec2-large-xls-r-1b-bemba-fds
14
+
15
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.2898
18
+ - Wer: 0.3435
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 5e-05
38
+ - train_batch_size: 4
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - gradient_accumulation_steps: 2
42
+ - total_train_batch_size: 8
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 500
46
+ - num_epochs: 15
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
52
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
53
+ | 1.7986 | 0.34 | 500 | 0.4549 | 0.7292 |
54
+ | 0.5358 | 0.67 | 1000 | 0.3325 | 0.4491 |
55
+ | 0.4559 | 1.01 | 1500 | 0.3090 | 0.3954 |
56
+ | 0.3983 | 1.35 | 2000 | 0.3067 | 0.4105 |
57
+ | 0.4067 | 1.68 | 2500 | 0.2838 | 0.3678 |
58
+ | 0.3722 | 2.02 | 3000 | 0.2824 | 0.3762 |
59
+ | 0.3286 | 2.36 | 3500 | 0.2810 | 0.3670 |
60
+ | 0.3239 | 2.69 | 4000 | 0.2643 | 0.3501 |
61
+ | 0.3187 | 3.03 | 4500 | 0.2838 | 0.3754 |
62
+ | 0.2801 | 3.36 | 5000 | 0.2815 | 0.3507 |
63
+ | 0.2806 | 3.7 | 5500 | 0.2725 | 0.3486 |
64
+ | 0.2714 | 4.04 | 6000 | 0.2898 | 0.3435 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.16.2
70
+ - Pytorch 1.10.0+cu111
71
+ - Datasets 1.18.3
72
+ - Tokenizers 0.11.0