update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: wav2vec2-large-xls-r-1b-bemba-fds
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# wav2vec2-large-xls-r-1b-bemba-fds
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.2898
|
18 |
+
- Wer: 0.3435
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 5e-05
|
38 |
+
- train_batch_size: 4
|
39 |
+
- eval_batch_size: 8
|
40 |
+
- seed: 42
|
41 |
+
- gradient_accumulation_steps: 2
|
42 |
+
- total_train_batch_size: 8
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 500
|
46 |
+
- num_epochs: 15
|
47 |
+
- mixed_precision_training: Native AMP
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
53 |
+
| 1.7986 | 0.34 | 500 | 0.4549 | 0.7292 |
|
54 |
+
| 0.5358 | 0.67 | 1000 | 0.3325 | 0.4491 |
|
55 |
+
| 0.4559 | 1.01 | 1500 | 0.3090 | 0.3954 |
|
56 |
+
| 0.3983 | 1.35 | 2000 | 0.3067 | 0.4105 |
|
57 |
+
| 0.4067 | 1.68 | 2500 | 0.2838 | 0.3678 |
|
58 |
+
| 0.3722 | 2.02 | 3000 | 0.2824 | 0.3762 |
|
59 |
+
| 0.3286 | 2.36 | 3500 | 0.2810 | 0.3670 |
|
60 |
+
| 0.3239 | 2.69 | 4000 | 0.2643 | 0.3501 |
|
61 |
+
| 0.3187 | 3.03 | 4500 | 0.2838 | 0.3754 |
|
62 |
+
| 0.2801 | 3.36 | 5000 | 0.2815 | 0.3507 |
|
63 |
+
| 0.2806 | 3.7 | 5500 | 0.2725 | 0.3486 |
|
64 |
+
| 0.2714 | 4.04 | 6000 | 0.2898 | 0.3435 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.16.2
|
70 |
+
- Pytorch 1.10.0+cu111
|
71 |
+
- Datasets 1.18.3
|
72 |
+
- Tokenizers 0.11.0
|