File size: 2,632 Bytes
6d2a040 e23ad97 6d2a040 e23ad97 6d2a040 e23ad97 6d2a040 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
- automatic-speech-recognition
- genbed
- generated_from_trainer
metrics:
- wer
model-index:
- name: xls-r-1b-bem-genbed-all
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xls-r-1b-bem-genbed-all
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the GENBED - BEM dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2172
- Wer: 0.7294
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 4.6827 | 0.2644 | 200 | 2.8347 | 1.0 |
| 1.0401 | 0.5288 | 400 | 0.5636 | 0.9410 |
| 0.4289 | 0.7931 | 600 | 0.4018 | 0.9029 |
| 0.3449 | 1.0575 | 800 | 0.3604 | 0.8771 |
| 0.2954 | 1.3219 | 1000 | 0.3389 | 0.8741 |
| 0.2719 | 1.5863 | 1200 | 0.2962 | 0.8439 |
| 0.2472 | 1.8506 | 1400 | 0.2701 | 0.8053 |
| 0.2093 | 2.1150 | 1600 | 0.2599 | 0.8285 |
| 0.1725 | 2.3794 | 1800 | 0.2534 | 0.8375 |
| 0.1675 | 2.6438 | 2000 | 0.2406 | 0.7691 |
| 0.1632 | 2.9081 | 2200 | 0.2309 | 0.7616 |
| 0.1295 | 3.1725 | 2400 | 0.2387 | 0.7557 |
| 0.1082 | 3.4369 | 2600 | 0.2275 | 0.7329 |
| 0.1059 | 3.7013 | 2800 | 0.2240 | 0.7329 |
| 0.1049 | 3.9656 | 3000 | 0.2172 | 0.7294 |
| 0.0657 | 4.2300 | 3200 | 0.2320 | 0.7220 |
| 0.059 | 4.4944 | 3400 | 0.2341 | 0.7215 |
| 0.0582 | 4.7588 | 3600 | 0.2316 | 0.7116 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|