--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-1b tags: - automatic-speech-recognition - genbed - generated_from_trainer metrics: - wer model-index: - name: xls-r-1b-bem-genbed-f-model results: [] --- # xls-r-1b-bem-genbed-f-model This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the GENBED - BEM dataset. It achieves the following results on the evaluation set: - Loss: 0.3137 - Wer: 0.5529 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | No log | 0.2740 | 100 | 3.0378 | 1.0 | | No log | 0.5479 | 200 | 0.8302 | 0.9818 | | No log | 0.8219 | 300 | 0.6783 | 0.9103 | | No log | 1.0959 | 400 | 0.5512 | 0.8721 | | 1.8782 | 1.3699 | 500 | 0.5296 | 0.8568 | | 1.8782 | 1.6438 | 600 | 0.4413 | 0.7333 | | 1.8782 | 1.9178 | 700 | 0.4747 | 0.7614 | | 1.8782 | 2.1918 | 800 | 0.3884 | 0.6667 | | 1.8782 | 2.4658 | 900 | 0.3577 | 0.6355 | | 0.5114 | 2.7397 | 1000 | 0.3585 | 0.6321 | | 0.5114 | 3.0137 | 1100 | 0.3641 | 0.6607 | | 0.5114 | 3.2877 | 1200 | 0.3813 | 0.7282 | | 0.5114 | 3.5616 | 1300 | 0.3829 | 0.7086 | | 0.5114 | 3.8356 | 1400 | 0.3682 | 0.6413 | | 0.3931 | 4.1096 | 1500 | 0.3527 | 0.6221 | | 0.3931 | 4.3836 | 1600 | 0.3481 | 0.6297 | | 0.3931 | 4.6575 | 1700 | 0.3541 | 0.6193 | | 0.3931 | 4.9315 | 1800 | 0.3355 | 0.6242 | | 0.3931 | 5.2055 | 1900 | 0.3339 | 0.5801 | | 0.3293 | 5.4795 | 2000 | 0.3137 | 0.5529 | | 0.3293 | 5.7534 | 2100 | 0.3132 | 0.5822 | | 0.3293 | 6.0274 | 2200 | 0.3145 | 0.5676 | | 0.3293 | 6.3014 | 2300 | 0.3283 | 0.5961 | | 0.3293 | 6.5753 | 2400 | 0.3247 | 0.5988 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0