--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-1b tags: - automatic-speech-recognition - natbed - generated_from_trainer metrics: - wer model-index: - name: xls-r-1b-bem-natbed-combined-model results: [] --- # xls-r-1b-bem-natbed-combined-model This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the NATBED - BEM dataset. It achieves the following results on the evaluation set: - Loss: 0.7801 - Wer: 0.7879 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | No log | 0.1252 | 100 | 1.3725 | 0.9805 | | No log | 0.2505 | 200 | 0.9491 | 0.8541 | | No log | 0.3757 | 300 | 0.9524 | 0.8137 | | No log | 0.5009 | 400 | 1.0355 | 0.9016 | | 1.7945 | 0.6262 | 500 | 0.9611 | 0.8788 | | 1.7945 | 0.7514 | 600 | 0.9790 | 0.8642 | | 1.7945 | 0.8766 | 700 | 0.9877 | 0.8602 | | 1.7945 | 1.0019 | 800 | 0.9604 | 0.8925 | | 1.7945 | 1.1271 | 900 | 0.8880 | 0.8328 | | 0.9885 | 1.2523 | 1000 | 0.8917 | 0.8368 | | 0.9885 | 1.3776 | 1100 | 0.9034 | 0.8306 | | 0.9885 | 1.5028 | 1200 | 0.8478 | 0.7938 | | 0.9885 | 1.6281 | 1300 | 0.8666 | 0.8628 | | 0.9885 | 1.7533 | 1400 | 0.8331 | 0.8218 | | 0.8854 | 1.8785 | 1500 | 0.8405 | 0.8045 | | 0.8854 | 2.0038 | 1600 | 0.7801 | 0.7879 | | 0.8854 | 2.1290 | 1700 | 0.8305 | 0.7917 | | 0.8854 | 2.2542 | 1800 | 0.7972 | 0.7911 | | 0.8854 | 2.3795 | 1900 | 0.7916 | 0.7758 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0