Model save
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: facebook/wav2vec2-xls-r-1b
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- wer
|
9 |
+
model-index:
|
10 |
+
- name: xls-r-1b-bem-natbed-native-model
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# xls-r-1b-bem-natbed-native-model
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.7276
|
22 |
+
- Wer: 0.6730
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 0.0003
|
42 |
+
- train_batch_size: 8
|
43 |
+
- eval_batch_size: 8
|
44 |
+
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 2
|
46 |
+
- total_train_batch_size: 16
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_steps: 100
|
50 |
+
- num_epochs: 30.0
|
51 |
+
- mixed_precision_training: Native AMP
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
56 |
+
|:-------------:|:------:|:----:|:---------------:|:------:|
|
57 |
+
| 4.5137 | 0.5618 | 100 | 2.5549 | 1.0 |
|
58 |
+
| 1.3916 | 1.1236 | 200 | 1.0883 | 0.9840 |
|
59 |
+
| 0.9962 | 1.6854 | 300 | 0.8153 | 0.8190 |
|
60 |
+
| 0.8625 | 2.2472 | 400 | 0.8690 | 0.8418 |
|
61 |
+
| 0.8168 | 2.8090 | 500 | 0.7395 | 0.7390 |
|
62 |
+
| 0.7197 | 3.3708 | 600 | 0.7596 | 0.7366 |
|
63 |
+
| 0.6848 | 3.9326 | 700 | 0.7033 | 0.7229 |
|
64 |
+
| 0.6134 | 4.4944 | 800 | 0.8300 | 0.7662 |
|
65 |
+
| 0.6303 | 5.0562 | 900 | 0.7365 | 0.7896 |
|
66 |
+
| 0.5467 | 5.6180 | 1000 | 0.6841 | 0.7487 |
|
67 |
+
| 0.5194 | 6.1798 | 1100 | 0.7868 | 0.6949 |
|
68 |
+
| 0.4617 | 6.7416 | 1200 | 0.7563 | 0.7278 |
|
69 |
+
| 0.4525 | 7.3034 | 1300 | 0.7276 | 0.6730 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.46.0.dev0
|
75 |
+
- Pytorch 2.4.1+cu121
|
76 |
+
- Datasets 3.0.1
|
77 |
+
- Tokenizers 0.20.0
|