--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-1b tags: - automatic-speech-recognition - natbed - generated_from_trainer metrics: - wer model-index: - name: xls-r-1b-bem-natbed-native-model results: [] --- # xls-r-1b-bem-natbed-native-model This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the NATBED - BEM dataset. It achieves the following results on the evaluation set: - Loss: 0.6841 - Wer: 0.7487 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 4.5137 | 0.5618 | 100 | 2.5549 | 1.0 | | 1.3916 | 1.1236 | 200 | 1.0883 | 0.9840 | | 0.9962 | 1.6854 | 300 | 0.8153 | 0.8190 | | 0.8625 | 2.2472 | 400 | 0.8690 | 0.8418 | | 0.8168 | 2.8090 | 500 | 0.7395 | 0.7390 | | 0.7197 | 3.3708 | 600 | 0.7596 | 0.7366 | | 0.6848 | 3.9326 | 700 | 0.7033 | 0.7229 | | 0.6134 | 4.4944 | 800 | 0.8300 | 0.7662 | | 0.6303 | 5.0562 | 900 | 0.7365 | 0.7896 | | 0.5467 | 5.6180 | 1000 | 0.6841 | 0.7487 | | 0.5194 | 6.1798 | 1100 | 0.7868 | 0.6949 | | 0.4617 | 6.7416 | 1200 | 0.7563 | 0.7278 | | 0.4525 | 7.3034 | 1300 | 0.7276 | 0.6730 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0