File size: 2,087 Bytes
98fe1a3 f743c47 98fe1a3 f743c47 98fe1a3 f743c47 98fe1a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
- automatic-speech-recognition
- BembaSpeech
- generated_from_trainer
metrics:
- wer
model-index:
- name: xls-r-1b-bem-sv-male
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xls-r-1b-bem-sv-male
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the BEMBASPEECH - BEM dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1473
- Wer: 0.6229
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.9808 | 0.5206 | 500 | 0.2580 | 0.8362 |
| 0.3877 | 1.0411 | 1000 | 0.2041 | 0.7790 |
| 0.298 | 1.5617 | 1500 | 0.1843 | 0.7619 |
| 0.2433 | 2.0822 | 2000 | 0.1621 | 0.7010 |
| 0.188 | 2.6028 | 2500 | 0.1653 | 0.6838 |
| 0.1521 | 3.1234 | 3000 | 0.1491 | 0.6590 |
| 0.1316 | 3.6439 | 3500 | 0.1473 | 0.6229 |
| 0.0925 | 4.1645 | 4000 | 0.1552 | 0.6448 |
| 0.0767 | 4.6851 | 4500 | 0.1523 | 0.6229 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|