File size: 2,540 Bytes
e4aef69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: xls-r-1b-bemba-genbed-combined
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xls-r-1b-bemba-genbed-combined

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5103
- Wer: 0.7252

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| No log        | 0.1375 | 100  | 3.2454          | 1.0    |
| No log        | 0.2749 | 200  | 2.9592          | 1.0    |
| No log        | 0.4124 | 300  | 1.0579          | 1.0633 |
| No log        | 0.5498 | 400  | 0.8291          | 0.9390 |
| 2.3726        | 0.6873 | 500  | 0.9104          | 0.9572 |
| 2.3726        | 0.8247 | 600  | 0.7652          | 0.8985 |
| 2.3726        | 0.9622 | 700  | 0.6910          | 0.8788 |
| 2.3726        | 1.0997 | 800  | 0.5304          | 0.7518 |
| 2.3726        | 1.2371 | 900  | 0.5304          | 0.7565 |
| 0.7002        | 1.3746 | 1000 | 0.5120          | 0.7657 |
| 0.7002        | 1.5120 | 1100 | 0.4937          | 0.7343 |
| 0.7002        | 1.6495 | 1200 | 0.4805          | 0.7139 |
| 0.7002        | 1.7869 | 1300 | 0.4803          | 0.7177 |
| 0.7002        | 1.9244 | 1400 | 0.4576          | 0.6875 |
| 0.5954        | 2.0619 | 1500 | 0.4863          | 0.7114 |
| 0.5954        | 2.1993 | 1600 | 0.5060          | 0.7316 |
| 0.5954        | 2.3368 | 1700 | 0.5103          | 0.7252 |


### Framework versions

- Transformers 4.46.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0