Edit model card

Model Card for mt5-base-multi-label-all-cs-iv

This model is fine-tuned for multi-label seq2seq text classification of Supportive Interactions in Instant Messenger dialogs of Adolescents.

Model Description

The model was fine-tuned on a dataset of Czech Instant Messenger dialogs of Adolescents. The classification is multi-label. For each of the utterances in the input, the model outputs any combination of the tags:'NO TAG', 'Informační podpora', 'Emocionální podpora', 'Začlenění do skupiny', 'Uznání', 'Nabídka pomoci': as a string joined with ', ' (ordered alphabetically). Each label indicates the presence of that category of Supportive Interactions: 'no tag', 'informational support', 'emocional support', 'social companionship', 'appraisal', 'instrumental support' in each of the utterances of the input. The inputs of the model is a sequence of utterances joined with ';'. The outputs are a sequence of per-utterance labels such as: 'NO TAG; Informační podpora, Uznání; NO TAG'

  • Developed by: Anonymous
  • Language(s): multilingual
  • Finetuned from: mt5-base

Model Sources

Usage

Here is how to use this model to classify a context-window of a dialogue:

import itertools
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import torch

# Target dialog context window
test_texts = ['Utterance1;Utterance2;Utterance3']

# Load the model and tokenizer
checkpoint_path = "chi2024/mt5-base-multi-label-all-cs-iv"
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)\
    .to("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path)

# Define helper functions
def predict_one(text):
    inputs = tokenizer(text, return_tensors="pt", padding=True,
                       truncation=True, max_length=256).to(model.device)
    outputs = model.generate(**inputs)
    decoded = [text.split(",")[0].strip() for text in
               tokenizer.batch_decode(outputs, skip_special_tokens=True)]
    predicted_sequence = list(
        itertools.chain(*(pred_one.split("; ") for pred_one in decoded)))
    return predicted_sequence

# Run the prediction
dec = predict_one(test_texts[0])
print(dec)
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.