--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards license: mit language: - cs --- # Model Card for mt5-base-multi-label-cs-iiib-02c This model is fine-tuned for multi-label text classification of Supportive Interactions in Instant Messenger dialogs of Adolescents in Czech. ## Model Description The model was fine-tuned on a dataset of Czech Instant Messenger dialogs of Adolescents. The classification is multi-label and the model outputs any combination of the tags:'NO TAG', 'Informační podpora', 'Emocionální podpora', 'Začlenění do skupiny', 'Uznání', 'Nabídka pomoci': as a string joined with ', ' (ordered alphabetically). Each label indicates the presence of that category of Supportive Interactions: 'no tag', 'informational support', 'emocional support', 'social companionship', 'appraisal', 'instrumental support'. The inputs of the model are: a target utterance and its bi-directional context; the label of the example is determined by the label of the target utterance. - **Developed by:** Anonymous - **Language(s):** multilingual - **Finetuned from:** mt5-base ## Model Sources - **Repository:** https://github.com/chi2024submission - **Paper:** Stay tuned! ## Usage Here is how to use this model to classify a context-window of a dialogue: ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import torch test_texts = ['Utterance2'] test_text_pairs = ['Utterance1;Utterance2;Utterance3'] checkpoint_path = "chi2024/mt5-base-multi-label-cs-iiib-02c" model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)\ .to("cuda" if torch.cuda.is_available() else "cpu") tokenizer = AutoTokenizer.from_pretrained(checkpoint_path) def verbalize_input(text: str, text_pair: str) -> str: return "Utterance: %s\nContext: %s" % (text, text_pair) def predict_one(text, pair): input_pair = verbalize_input(text, pair) inputs = tokenizer(input_pair, return_tensors="pt", padding=True, truncation=True, max_length=256).to(model.device) outputs = model.generate(**inputs) decoded = [text.split(",")[0].strip() for text in tokenizer.batch_decode(outputs, skip_special_tokens=True)] return decoded dec = predict_one(test_texts[0], test_text_pairs[0]) print(dec) ```