--- base_model: - cstr/llama3.1-8b-spaetzle-v85 - cstr/llama3.1-8b-spaetzle-v86 - cstr/llama3.1-8b-spaetzle-v74 tags: - merge - mergekit - lazymergekit - cstr/llama3.1-8b-spaetzle-v85 - cstr/llama3.1-8b-spaetzle-v86 - cstr/llama3.1-8b-spaetzle-v74 license: llama3 language: - en - de --- # llama3.1-8b-spaetzle-v90 llama3.1-8b-spaetzle-v90 is a progressive merge of merges. EQ-Bench v2_de: 69.93 (171/171). ## 🧩 Configuration ```yaml models: - model: cstr/llama3.1-8b-spaetzle-v59 # no parameters necessary for base model - model: cstr/llama3.1-8b-spaetzle-v85 parameters: density: 0.65 weight: 0.3 - model: cstr/llama3.1-8b-spaetzle-v86 parameters: density: 0.65 weight: 0.3 - model: cstr/llama3.1-8b-spaetzle-v74 parameters: density: 0.65 weight: 0.3 merge_method: dare_ties base_model: cstr/llama3.1-8b-spaetzle-v59 parameters: int8_mask: true dtype: bfloat16 random_seed: 0 tokenizer_source: base ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "cstr/llama3.1-8b-spaetzle-v90" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```