Fix bug in selecting a gene with "aggregate_data" option
Browse files- in_silico_perturber_stats.py +752 -0
in_silico_perturber_stats.py
ADDED
@@ -0,0 +1,752 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Geneformer in silico perturber stats generator.
|
3 |
+
|
4 |
+
Usage:
|
5 |
+
from geneformer import InSilicoPerturberStats
|
6 |
+
ispstats = InSilicoPerturberStats(mode="goal_state_shift",
|
7 |
+
combos=0,
|
8 |
+
anchor_gene=None,
|
9 |
+
cell_states_to_model={"state_key": "disease",
|
10 |
+
"start_state": "dcm",
|
11 |
+
"goal_state": "nf",
|
12 |
+
"alt_states": ["hcm", "other1", "other2"]})
|
13 |
+
ispstats.get_stats("path/to/input_data",
|
14 |
+
None,
|
15 |
+
"path/to/output_directory",
|
16 |
+
"output_prefix")
|
17 |
+
"""
|
18 |
+
|
19 |
+
|
20 |
+
import os
|
21 |
+
import logging
|
22 |
+
import numpy as np
|
23 |
+
import pandas as pd
|
24 |
+
import pickle
|
25 |
+
import random
|
26 |
+
import statsmodels.stats.multitest as smt
|
27 |
+
from pathlib import Path
|
28 |
+
from scipy.stats import ranksums
|
29 |
+
from sklearn.mixture import GaussianMixture
|
30 |
+
from tqdm.auto import trange, tqdm
|
31 |
+
|
32 |
+
from .perturber_helpers import flatten_list
|
33 |
+
|
34 |
+
from .tokenizer import TOKEN_DICTIONARY_FILE
|
35 |
+
|
36 |
+
GENE_NAME_ID_DICTIONARY_FILE = Path(__file__).parent / "gene_name_id_dict.pkl"
|
37 |
+
|
38 |
+
logger = logging.getLogger(__name__)
|
39 |
+
|
40 |
+
# invert dictionary keys/values
|
41 |
+
def invert_dict(dictionary):
|
42 |
+
return {v: k for k, v in dictionary.items()}
|
43 |
+
|
44 |
+
def read_dict(cos_sims_dict, cell_or_gene_emb, anchor_token):
|
45 |
+
if cell_or_gene_emb == "cell":
|
46 |
+
cell_emb_dict = {k: v for k,
|
47 |
+
v in cos_sims_dict.items() if v and "cell_emb" in k}
|
48 |
+
return [cell_emb_dict]
|
49 |
+
elif cell_or_gene_emb == "gene":
|
50 |
+
gene_emb_dict = {k: v for k,
|
51 |
+
v in cos_sims_dict.items() if v and anchor_token == k[0]}
|
52 |
+
return [gene_emb_dict]
|
53 |
+
|
54 |
+
|
55 |
+
def recursive_search_dir(dir, pickle_suffix):
|
56 |
+
|
57 |
+
|
58 |
+
# read raw dictionary files
|
59 |
+
def read_dictionaries(input_data_directory,
|
60 |
+
cell_or_gene_emb,
|
61 |
+
anchor_token,
|
62 |
+
cell_states_to_model,
|
63 |
+
pickle_suffix,
|
64 |
+
recursive=False):
|
65 |
+
|
66 |
+
file_found = False
|
67 |
+
file_path_list = []
|
68 |
+
if cell_states_to_model is None:
|
69 |
+
dict_list = []
|
70 |
+
else:
|
71 |
+
state_dict = {state: [] for state in cell_states_to_model}
|
72 |
+
|
73 |
+
for file in os.listdir(input_data_directory):
|
74 |
+
# process only _raw.pickle files
|
75 |
+
if file.endswith(pickle_suffix):
|
76 |
+
file_found = True
|
77 |
+
file_path_list += [f"{input_data_directory}/{file}"]
|
78 |
+
for file_path in tqdm(file_path_list):
|
79 |
+
with open(file_path, 'rb') as fp:
|
80 |
+
cos_sims_dict = pickle.load(fp)
|
81 |
+
if cell_states_to_model is None:
|
82 |
+
dict_list += read_dict(cos_sims_dict, cell_or_gene_emb, anchor_token)
|
83 |
+
else:
|
84 |
+
for state in cell_states_to_model:
|
85 |
+
state_dict[state] += read_dict(cos_sims_dict[state], cell_or_gene_emb, anchor_token)
|
86 |
+
if not file_found:
|
87 |
+
logger.error(
|
88 |
+
f"No raw data for processing found within provided directory. " \
|
89 |
+
"Please ensure data files end with '{pickle_suffix}'.")
|
90 |
+
raise
|
91 |
+
if cell_states_to_model is None:
|
92 |
+
return dict_list
|
93 |
+
else:
|
94 |
+
return state_dict
|
95 |
+
|
96 |
+
# get complete gene list
|
97 |
+
def get_gene_list(dict_list,mode):
|
98 |
+
if mode == "cell":
|
99 |
+
position = 0
|
100 |
+
elif mode == "gene":
|
101 |
+
position = 1
|
102 |
+
gene_set = set()
|
103 |
+
for dict_i in dict_list:
|
104 |
+
gene_set.update([k[position] for k, v in dict_i.items() if v])
|
105 |
+
gene_list = list(gene_set)
|
106 |
+
if mode == "gene":
|
107 |
+
gene_list.remove("cell_emb")
|
108 |
+
gene_list.sort()
|
109 |
+
return gene_list
|
110 |
+
|
111 |
+
def token_tuple_to_ensembl_ids(token_tuple, gene_token_id_dict):
|
112 |
+
try:
|
113 |
+
return tuple([gene_token_id_dict.get(i, np.nan) for i in token_tuple])
|
114 |
+
except TypeError as te:
|
115 |
+
return tuple(gene_token_id_dict.get(token_tuple, np.nan))
|
116 |
+
|
117 |
+
def n_detections(token, dict_list, mode, anchor_token):
|
118 |
+
cos_sim_megalist = []
|
119 |
+
for dict_i in dict_list:
|
120 |
+
if mode == "cell":
|
121 |
+
cos_sim_megalist += dict_i.get((token, "cell_emb"),[])
|
122 |
+
elif mode == "gene":
|
123 |
+
cos_sim_megalist += dict_i.get((anchor_token, token),[])
|
124 |
+
return len(cos_sim_megalist)
|
125 |
+
|
126 |
+
def get_fdr(pvalues):
|
127 |
+
return list(smt.multipletests(pvalues, alpha=0.05, method="fdr_bh")[1])
|
128 |
+
|
129 |
+
def get_impact_component(test_value, gaussian_mixture_model):
|
130 |
+
impact_border = gaussian_mixture_model.means_[0][0]
|
131 |
+
nonimpact_border = gaussian_mixture_model.means_[1][0]
|
132 |
+
if test_value > nonimpact_border:
|
133 |
+
impact_component = 0
|
134 |
+
elif test_value < impact_border:
|
135 |
+
impact_component = 1
|
136 |
+
else:
|
137 |
+
impact_component_raw = gaussian_mixture_model.predict([[test_value]])[0]
|
138 |
+
if impact_component_raw == 1:
|
139 |
+
impact_component = 0
|
140 |
+
elif impact_component_raw == 0:
|
141 |
+
impact_component = 1
|
142 |
+
return impact_component
|
143 |
+
|
144 |
+
# aggregate data for single perturbation in multiple cells
|
145 |
+
def isp_aggregate_grouped_perturb(cos_sims_df, dict_list):
|
146 |
+
names=["Cosine_shift"]
|
147 |
+
cos_sims_full_df = pd.DataFrame(columns=names)
|
148 |
+
|
149 |
+
cos_shift_data = []
|
150 |
+
token = cos_sims_df["Gene"][0]
|
151 |
+
for dict_i in dict_list:
|
152 |
+
cos_shift_data += dict_i.get((token, "cell_emb"),[])
|
153 |
+
cos_sims_full_df["Cosine_shift"] = cos_shift_data
|
154 |
+
return cos_sims_full_df
|
155 |
+
|
156 |
+
# stats comparing cos sim shifts towards goal state of test perturbations vs random perturbations
|
157 |
+
def isp_stats_to_goal_state(cos_sims_df, dict_list, cell_states_to_model, genes_perturbed):
|
158 |
+
cell_state_key = cell_states_to_model["start_state"]
|
159 |
+
if ("alt_states" not in cell_states_to_model.keys()) \
|
160 |
+
or (len(cell_states_to_model["alt_states"]) == 0) \
|
161 |
+
or (cell_states_to_model["alt_states"] == [None]):
|
162 |
+
alt_end_state_exists = False
|
163 |
+
elif (len(cell_states_to_model["alt_states"]) > 0) and (cell_states_to_model["alt_states"] != [None]):
|
164 |
+
alt_end_state_exists = True
|
165 |
+
|
166 |
+
# for single perturbation in multiple cells, there are no random perturbations to compare to
|
167 |
+
if genes_perturbed != "all":
|
168 |
+
names=["Shift_to_goal_end",
|
169 |
+
"Shift_to_alt_end"]
|
170 |
+
if alt_end_state_exists == False:
|
171 |
+
names.remove("Shift_to_alt_end")
|
172 |
+
cos_sims_full_df = pd.DataFrame(columns=names)
|
173 |
+
|
174 |
+
cos_shift_data = []
|
175 |
+
token = cos_sims_df["Gene"][0]
|
176 |
+
for dict_i in dict_list:
|
177 |
+
cos_shift_data += dict_i.get((token, "cell_emb"),[])
|
178 |
+
if alt_end_state_exists == False:
|
179 |
+
cos_sims_full_df["Shift_to_goal_end"] = [goal_end for start_state,goal_end in cos_shift_data]
|
180 |
+
if alt_end_state_exists == True:
|
181 |
+
cos_sims_full_df["Shift_to_goal_end"] = [goal_end for start_state,goal_end,alt_end in cos_shift_data]
|
182 |
+
cos_sims_full_df["Shift_to_alt_end"] = [alt_end for start_state,goal_end,alt_end in cos_shift_data]
|
183 |
+
|
184 |
+
# sort by shift to desired state
|
185 |
+
cos_sims_full_df = cos_sims_full_df.sort_values(by=["Shift_to_goal_end"],
|
186 |
+
ascending=[False])
|
187 |
+
return cos_sims_full_df
|
188 |
+
|
189 |
+
elif genes_perturbed == "all":
|
190 |
+
random_tuples = []
|
191 |
+
for i in trange(cos_sims_df.shape[0]):
|
192 |
+
token = cos_sims_df["Gene"][i]
|
193 |
+
for dict_i in dict_list:
|
194 |
+
random_tuples += dict_i.get((token, "cell_emb"),[])
|
195 |
+
|
196 |
+
if alt_end_state_exists == False:
|
197 |
+
goal_end_random_megalist = [goal_end for start_state,goal_end in random_tuples]
|
198 |
+
elif alt_end_state_exists == True:
|
199 |
+
goal_end_random_megalist = [goal_end for start_state,goal_end,alt_end in random_tuples]
|
200 |
+
alt_end_random_megalist = [alt_end for start_state,goal_end,alt_end in random_tuples]
|
201 |
+
|
202 |
+
# downsample to improve speed of ranksums
|
203 |
+
if len(goal_end_random_megalist) > 100_000:
|
204 |
+
random.seed(42)
|
205 |
+
goal_end_random_megalist = random.sample(goal_end_random_megalist, k=100_000)
|
206 |
+
if alt_end_state_exists == True:
|
207 |
+
if len(alt_end_random_megalist) > 100_000:
|
208 |
+
random.seed(42)
|
209 |
+
alt_end_random_megalist = random.sample(alt_end_random_megalist, k=100_000)
|
210 |
+
|
211 |
+
names=["Gene",
|
212 |
+
"Gene_name",
|
213 |
+
"Ensembl_ID",
|
214 |
+
"Shift_to_goal_end",
|
215 |
+
"Shift_to_alt_end",
|
216 |
+
"Goal_end_vs_random_pval",
|
217 |
+
"Alt_end_vs_random_pval"]
|
218 |
+
if alt_end_state_exists == False:
|
219 |
+
names.remove("Shift_to_alt_end")
|
220 |
+
names.remove("Alt_end_vs_random_pval")
|
221 |
+
cos_sims_full_df = pd.DataFrame(columns=names)
|
222 |
+
|
223 |
+
for i in trange(cos_sims_df.shape[0]):
|
224 |
+
token = cos_sims_df["Gene"][i]
|
225 |
+
name = cos_sims_df["Gene_name"][i]
|
226 |
+
ensembl_id = cos_sims_df["Ensembl_ID"][i]
|
227 |
+
cos_shift_data = []
|
228 |
+
|
229 |
+
for dict_i in dict_list:
|
230 |
+
cos_shift_data += dict_i.get((token, "cell_emb"),[])
|
231 |
+
|
232 |
+
if alt_end_state_exists == False:
|
233 |
+
goal_end_cos_sim_megalist = [goal_end for start_state,goal_end in cos_shift_data]
|
234 |
+
elif alt_end_state_exists == True:
|
235 |
+
goal_end_cos_sim_megalist = [goal_end for start_state,goal_end,alt_end in cos_shift_data]
|
236 |
+
alt_end_cos_sim_megalist = [alt_end for start_state,goal_end,alt_end in cos_shift_data]
|
237 |
+
mean_alt_end = np.mean(alt_end_cos_sim_megalist)
|
238 |
+
pval_alt_end = ranksums(alt_end_random_megalist,alt_end_cos_sim_megalist).pvalue
|
239 |
+
|
240 |
+
mean_goal_end = np.mean(goal_end_cos_sim_megalist)
|
241 |
+
pval_goal_end = ranksums(goal_end_random_megalist,goal_end_cos_sim_megalist).pvalue
|
242 |
+
|
243 |
+
if alt_end_state_exists == False:
|
244 |
+
data_i = [token,
|
245 |
+
name,
|
246 |
+
ensembl_id,
|
247 |
+
mean_goal_end,
|
248 |
+
pval_goal_end]
|
249 |
+
elif alt_end_state_exists == True:
|
250 |
+
data_i = [token,
|
251 |
+
name,
|
252 |
+
ensembl_id,
|
253 |
+
mean_goal_end,
|
254 |
+
mean_alt_end,
|
255 |
+
pval_goal_end,
|
256 |
+
pval_alt_end]
|
257 |
+
|
258 |
+
cos_sims_df_i = pd.DataFrame(dict(zip(names,data_i)),index=[i])
|
259 |
+
cos_sims_full_df = pd.concat([cos_sims_full_df,cos_sims_df_i])
|
260 |
+
|
261 |
+
cos_sims_full_df["Goal_end_FDR"] = get_fdr(list(cos_sims_full_df["Goal_end_vs_random_pval"]))
|
262 |
+
if alt_end_state_exists == True:
|
263 |
+
cos_sims_full_df["Alt_end_FDR"] = get_fdr(list(cos_sims_full_df["Alt_end_vs_random_pval"]))
|
264 |
+
|
265 |
+
# quantify number of detections of each gene
|
266 |
+
cos_sims_full_df["N_Detections"] = [n_detections(i, dict_list, "cell", None) for i in cos_sims_full_df["Gene"]]
|
267 |
+
|
268 |
+
# sort by shift to desired state\
|
269 |
+
cos_sims_full_df["Sig"] = [1 if fdr<0.05 else 0 for fdr in cos_sims_full_df["Goal_end_FDR"]]
|
270 |
+
cos_sims_full_df = cos_sims_full_df.sort_values(by=["Sig",
|
271 |
+
"Shift_to_goal_end",
|
272 |
+
"Goal_end_FDR"],
|
273 |
+
ascending=[False,False,True])
|
274 |
+
|
275 |
+
return cos_sims_full_df
|
276 |
+
|
277 |
+
# stats comparing cos sim shifts of test perturbations vs null distribution
|
278 |
+
def isp_stats_vs_null(cos_sims_df, dict_list, null_dict_list):
|
279 |
+
cos_sims_full_df = cos_sims_df.copy()
|
280 |
+
|
281 |
+
cos_sims_full_df["Test_avg_shift"] = np.zeros(cos_sims_df.shape[0], dtype=float)
|
282 |
+
cos_sims_full_df["Null_avg_shift"] = np.zeros(cos_sims_df.shape[0], dtype=float)
|
283 |
+
cos_sims_full_df["Test_vs_null_avg_shift"] = np.zeros(cos_sims_df.shape[0], dtype=float)
|
284 |
+
cos_sims_full_df["Test_vs_null_pval"] = np.zeros(cos_sims_df.shape[0], dtype=float)
|
285 |
+
cos_sims_full_df["Test_vs_null_FDR"] = np.zeros(cos_sims_df.shape[0], dtype=float)
|
286 |
+
cos_sims_full_df["N_Detections_test"] = np.zeros(cos_sims_df.shape[0], dtype="uint32")
|
287 |
+
cos_sims_full_df["N_Detections_null"] = np.zeros(cos_sims_df.shape[0], dtype="uint32")
|
288 |
+
|
289 |
+
for i in trange(cos_sims_df.shape[0]):
|
290 |
+
token = cos_sims_df["Gene"][i]
|
291 |
+
test_shifts = []
|
292 |
+
null_shifts = []
|
293 |
+
|
294 |
+
for dict_i in dict_list:
|
295 |
+
test_shifts += dict_i.get((token, "cell_emb"),[])
|
296 |
+
|
297 |
+
for dict_i in null_dict_list:
|
298 |
+
null_shifts += dict_i.get((token, "cell_emb"),[])
|
299 |
+
|
300 |
+
cos_sims_full_df.loc[i, "Test_avg_shift"] = np.mean(test_shifts)
|
301 |
+
cos_sims_full_df.loc[i, "Null_avg_shift"] = np.mean(null_shifts)
|
302 |
+
cos_sims_full_df.loc[i, "Test_vs_null_avg_shift"] = np.mean(test_shifts)-np.mean(null_shifts)
|
303 |
+
cos_sims_full_df.loc[i, "Test_vs_null_pval"] = ranksums(test_shifts,
|
304 |
+
null_shifts, nan_policy="omit").pvalue
|
305 |
+
# remove nan values
|
306 |
+
cos_sims_full_df.Test_vs_null_pval = np.where(np.isnan(cos_sims_full_df.Test_vs_null_pval), 1, cos_sims_full_df.Test_vs_null_pval)
|
307 |
+
cos_sims_full_df.loc[i, "N_Detections_test"] = len(test_shifts)
|
308 |
+
cos_sims_full_df.loc[i, "N_Detections_null"] = len(null_shifts)
|
309 |
+
|
310 |
+
cos_sims_full_df["Test_vs_null_FDR"] = get_fdr(cos_sims_full_df["Test_vs_null_pval"])
|
311 |
+
|
312 |
+
cos_sims_full_df["Sig"] = [1 if fdr<0.05 else 0 for fdr in cos_sims_full_df["Test_vs_null_FDR"]]
|
313 |
+
cos_sims_full_df = cos_sims_full_df.sort_values(by=["Sig",
|
314 |
+
"Test_vs_null_avg_shift",
|
315 |
+
"Test_vs_null_FDR"],
|
316 |
+
ascending=[False,False,True])
|
317 |
+
return cos_sims_full_df
|
318 |
+
|
319 |
+
# stats for identifying perturbations with largest effect within a given set of cells
|
320 |
+
# fits a mixture model to 2 components (impact vs. non-impact) and
|
321 |
+
# reports the most likely component for each test perturbation
|
322 |
+
# Note: because assumes given perturbation has a consistent effect in the cells tested,
|
323 |
+
# we recommend only using the mixture model strategy with uniform cell populations
|
324 |
+
def isp_stats_mixture_model(cos_sims_df, dict_list, combos, anchor_token):
|
325 |
+
|
326 |
+
names=["Gene",
|
327 |
+
"Gene_name",
|
328 |
+
"Ensembl_ID"]
|
329 |
+
|
330 |
+
if combos == 0:
|
331 |
+
names += ["Test_avg_shift"]
|
332 |
+
elif combos == 1:
|
333 |
+
names += ["Anchor_shift",
|
334 |
+
"Test_token_shift",
|
335 |
+
"Sum_of_indiv_shifts",
|
336 |
+
"Combo_shift",
|
337 |
+
"Combo_minus_sum_shift"]
|
338 |
+
|
339 |
+
names += ["Impact_component",
|
340 |
+
"Impact_component_percent"]
|
341 |
+
|
342 |
+
cos_sims_full_df = pd.DataFrame(columns=names)
|
343 |
+
avg_values = []
|
344 |
+
gene_names = []
|
345 |
+
|
346 |
+
for i in trange(cos_sims_df.shape[0]):
|
347 |
+
token = cos_sims_df["Gene"][i]
|
348 |
+
name = cos_sims_df["Gene_name"][i]
|
349 |
+
ensembl_id = cos_sims_df["Ensembl_ID"][i]
|
350 |
+
cos_shift_data = []
|
351 |
+
|
352 |
+
for dict_i in dict_list:
|
353 |
+
if (combos == 0) and (anchor_token is not None):
|
354 |
+
cos_shift_data += dict_i.get((anchor_token, token),[])
|
355 |
+
else:
|
356 |
+
cos_shift_data += dict_i.get((token, "cell_emb"),[])
|
357 |
+
|
358 |
+
# Extract values for current gene
|
359 |
+
if combos == 0:
|
360 |
+
test_values = cos_shift_data
|
361 |
+
elif combos == 1:
|
362 |
+
test_values = []
|
363 |
+
for tup in cos_shift_data:
|
364 |
+
test_values.append(tup[2])
|
365 |
+
|
366 |
+
if len(test_values) > 0:
|
367 |
+
avg_value = np.mean(test_values)
|
368 |
+
avg_values.append(avg_value)
|
369 |
+
gene_names.append(name)
|
370 |
+
|
371 |
+
# fit Gaussian mixture model to dataset of mean for each gene
|
372 |
+
avg_values_to_fit = np.array(avg_values).reshape(-1, 1)
|
373 |
+
gm = GaussianMixture(n_components=2, random_state=0).fit(avg_values_to_fit)
|
374 |
+
|
375 |
+
for i in trange(cos_sims_df.shape[0]):
|
376 |
+
token = cos_sims_df["Gene"][i]
|
377 |
+
name = cos_sims_df["Gene_name"][i]
|
378 |
+
ensembl_id = cos_sims_df["Ensembl_ID"][i]
|
379 |
+
cos_shift_data = []
|
380 |
+
|
381 |
+
for dict_i in dict_list:
|
382 |
+
if (combos == 0) and (anchor_token is not None):
|
383 |
+
cos_shift_data += dict_i.get((anchor_token, token),[])
|
384 |
+
else:
|
385 |
+
cos_shift_data += dict_i.get((token, "cell_emb"),[])
|
386 |
+
|
387 |
+
if combos == 0:
|
388 |
+
mean_test = np.mean(cos_shift_data)
|
389 |
+
impact_components = [get_impact_component(value,gm) for value in cos_shift_data]
|
390 |
+
elif combos == 1:
|
391 |
+
anchor_cos_sim_megalist = [anchor for anchor,token,combo in cos_shift_data]
|
392 |
+
token_cos_sim_megalist = [token for anchor,token,combo in cos_shift_data]
|
393 |
+
anchor_plus_token_cos_sim_megalist = [1-((1-anchor)+(1-token)) for anchor,token,combo in cos_shift_data]
|
394 |
+
combo_anchor_token_cos_sim_megalist = [combo for anchor,token,combo in cos_shift_data]
|
395 |
+
combo_minus_sum_cos_sim_megalist = [combo-(1-((1-anchor)+(1-token))) for anchor,token,combo in cos_shift_data]
|
396 |
+
|
397 |
+
mean_anchor = np.mean(anchor_cos_sim_megalist)
|
398 |
+
mean_token = np.mean(token_cos_sim_megalist)
|
399 |
+
mean_sum = np.mean(anchor_plus_token_cos_sim_megalist)
|
400 |
+
mean_test = np.mean(combo_anchor_token_cos_sim_megalist)
|
401 |
+
mean_combo_minus_sum = np.mean(combo_minus_sum_cos_sim_megalist)
|
402 |
+
|
403 |
+
impact_components = [get_impact_component(value,gm) for value in combo_anchor_token_cos_sim_megalist]
|
404 |
+
|
405 |
+
impact_component = get_impact_component(mean_test,gm)
|
406 |
+
impact_component_percent = np.mean(impact_components)*100
|
407 |
+
|
408 |
+
data_i = [token,
|
409 |
+
name,
|
410 |
+
ensembl_id]
|
411 |
+
if combos == 0:
|
412 |
+
data_i += [mean_test]
|
413 |
+
elif combos == 1:
|
414 |
+
data_i += [mean_anchor,
|
415 |
+
mean_token,
|
416 |
+
mean_sum,
|
417 |
+
mean_test,
|
418 |
+
mean_combo_minus_sum]
|
419 |
+
data_i += [impact_component,
|
420 |
+
impact_component_percent]
|
421 |
+
|
422 |
+
cos_sims_df_i = pd.DataFrame(dict(zip(names,data_i)),index=[i])
|
423 |
+
cos_sims_full_df = pd.concat([cos_sims_full_df,cos_sims_df_i])
|
424 |
+
|
425 |
+
# quantify number of detections of each gene
|
426 |
+
cos_sims_full_df["N_Detections"] = [n_detections(i,
|
427 |
+
dict_list,
|
428 |
+
"gene",
|
429 |
+
anchor_token) for i in cos_sims_full_df["Gene"]]
|
430 |
+
|
431 |
+
if combos == 0:
|
432 |
+
cos_sims_full_df = cos_sims_full_df.sort_values(by=["Impact_component",
|
433 |
+
"Test_avg_shift"],
|
434 |
+
ascending=[False,True])
|
435 |
+
elif combos == 1:
|
436 |
+
cos_sims_full_df = cos_sims_full_df.sort_values(by=["Impact_component",
|
437 |
+
"Combo_minus_sum_shift"],
|
438 |
+
ascending=[False,True])
|
439 |
+
return cos_sims_full_df
|
440 |
+
|
441 |
+
class InSilicoPerturberStats:
|
442 |
+
valid_option_dict = {
|
443 |
+
"mode": {"goal_state_shift","vs_null","mixture_model","aggregate_data"},
|
444 |
+
"combos": {0,1},
|
445 |
+
"anchor_gene": {None, str},
|
446 |
+
"cell_states_to_model": {None, dict},
|
447 |
+
"pickle_suffix": {None, str}
|
448 |
+
}
|
449 |
+
def __init__(
|
450 |
+
self,
|
451 |
+
mode="mixture_model",
|
452 |
+
genes_perturbed="all",
|
453 |
+
combos=0,
|
454 |
+
anchor_gene=None,
|
455 |
+
cell_states_to_model=None,
|
456 |
+
pickle_suffix="_raw.pickle",
|
457 |
+
token_dictionary_file=TOKEN_DICTIONARY_FILE,
|
458 |
+
gene_name_id_dictionary_file=GENE_NAME_ID_DICTIONARY_FILE,
|
459 |
+
):
|
460 |
+
"""
|
461 |
+
Initialize in silico perturber stats generator.
|
462 |
+
|
463 |
+
Parameters
|
464 |
+
----------
|
465 |
+
mode : {"goal_state_shift","vs_null","mixture_model","aggregate_data"}
|
466 |
+
Type of stats.
|
467 |
+
"goal_state_shift": perturbation vs. random for desired cell state shift
|
468 |
+
"vs_null": perturbation vs. null from provided null distribution dataset
|
469 |
+
"mixture_model": perturbation in impact vs. no impact component of mixture model (no goal direction)
|
470 |
+
"aggregate_data": aggregates cosine shifts for single perturbation in multiple cells
|
471 |
+
genes_perturbed : "all", list
|
472 |
+
Genes perturbed in isp experiment.
|
473 |
+
Default is assuming genes_to_perturb in isp experiment was "all" (each gene in each cell).
|
474 |
+
Otherwise, may provide a list of ENSEMBL IDs of genes perturbed as a group all together.
|
475 |
+
combos : {0,1,2}
|
476 |
+
Whether to perturb genes individually (0), in pairs (1), or in triplets (2).
|
477 |
+
anchor_gene : None, str
|
478 |
+
ENSEMBL ID of gene to use as anchor in combination perturbations or in testing effect on downstream genes.
|
479 |
+
For example, if combos=1 and anchor_gene="ENSG00000136574":
|
480 |
+
analyzes data for anchor gene perturbed in combination with each other gene.
|
481 |
+
However, if combos=0 and anchor_gene="ENSG00000136574":
|
482 |
+
analyzes data for the effect of anchor gene's perturbation on the embedding of each other gene.
|
483 |
+
cell_states_to_model: None, dict
|
484 |
+
Cell states to model if testing perturbations that achieve goal state change.
|
485 |
+
Four-item dictionary with keys: state_key, start_state, goal_state, and alt_states
|
486 |
+
state_key: key specifying name of column in .dataset that defines the start/goal states
|
487 |
+
start_state: value in the state_key column that specifies the start state
|
488 |
+
goal_state: value in the state_key column taht specifies the goal end state
|
489 |
+
alt_states: list of values in the state_key column that specify the alternate end states
|
490 |
+
For example: {"state_key": "disease",
|
491 |
+
"start_state": "dcm",
|
492 |
+
"goal_state": "nf",
|
493 |
+
"alt_states": ["hcm", "other1", "other2"]}
|
494 |
+
token_dictionary_file : Path
|
495 |
+
Path to pickle file containing token dictionary (Ensembl ID:token).
|
496 |
+
gene_name_id_dictionary_file : Path
|
497 |
+
Path to pickle file containing gene name to ID dictionary (gene name:Ensembl ID).
|
498 |
+
"""
|
499 |
+
|
500 |
+
self.mode = mode
|
501 |
+
self.genes_perturbed = genes_perturbed
|
502 |
+
self.combos = combos
|
503 |
+
self.anchor_gene = anchor_gene
|
504 |
+
self.cell_states_to_model = cell_states_to_model
|
505 |
+
self.pickle_suffix = pickle_suffix
|
506 |
+
|
507 |
+
self.validate_options()
|
508 |
+
|
509 |
+
# load token dictionary (Ensembl IDs:token)
|
510 |
+
with open(token_dictionary_file, "rb") as f:
|
511 |
+
self.gene_token_dict = pickle.load(f)
|
512 |
+
|
513 |
+
# load gene name dictionary (gene name:Ensembl ID)
|
514 |
+
with open(gene_name_id_dictionary_file, "rb") as f:
|
515 |
+
self.gene_name_id_dict = pickle.load(f)
|
516 |
+
|
517 |
+
if anchor_gene is None:
|
518 |
+
self.anchor_token = None
|
519 |
+
else:
|
520 |
+
self.anchor_token = self.gene_token_dict[self.anchor_gene]
|
521 |
+
|
522 |
+
def validate_options(self):
|
523 |
+
for attr_name,valid_options in self.valid_option_dict.items():
|
524 |
+
attr_value = self.__dict__[attr_name]
|
525 |
+
if type(attr_value) not in {list, dict}:
|
526 |
+
if attr_name in {"anchor_gene"}:
|
527 |
+
continue
|
528 |
+
elif attr_value in valid_options:
|
529 |
+
continue
|
530 |
+
valid_type = False
|
531 |
+
for option in valid_options:
|
532 |
+
# not sure what the last check is for?
|
533 |
+
if isinstance(attr_value, option): # and (option in [int,list,dict]):
|
534 |
+
valid_type = True
|
535 |
+
break
|
536 |
+
if not valid_type:
|
537 |
+
logger.error(
|
538 |
+
f"Invalid option for {attr_name}. " \
|
539 |
+
f"Valid options for {attr_name}: {valid_options}"
|
540 |
+
)
|
541 |
+
raise
|
542 |
+
|
543 |
+
if self.cell_states_to_model is not None:
|
544 |
+
if len(self.cell_states_to_model.items()) == 1:
|
545 |
+
logger.warning(
|
546 |
+
"The single value dictionary for cell_states_to_model will be " \
|
547 |
+
"replaced with a dictionary with named keys for start, goal, and alternate states. " \
|
548 |
+
"Please specify state_key, start_state, goal_state, and alt_states " \
|
549 |
+
"in the cell_states_to_model dictionary for future use. " \
|
550 |
+
"For example, cell_states_to_model={" \
|
551 |
+
"'state_key': 'disease', " \
|
552 |
+
"'start_state': 'dcm', " \
|
553 |
+
"'goal_state': 'nf', " \
|
554 |
+
"'alt_states': ['hcm', 'other1', 'other2']}"
|
555 |
+
)
|
556 |
+
for key,value in self.cell_states_to_model.items():
|
557 |
+
if (len(value) == 3) and isinstance(value, tuple):
|
558 |
+
if isinstance(value[0],list) and isinstance(value[1],list) and isinstance(value[2],list):
|
559 |
+
if len(value[0]) == 1 and len(value[1]) == 1:
|
560 |
+
all_values = value[0]+value[1]+value[2]
|
561 |
+
if len(all_values) == len(set(all_values)):
|
562 |
+
continue
|
563 |
+
# reformat to the new named key format
|
564 |
+
state_values = flatten_list(list(self.cell_states_to_model.values()))
|
565 |
+
self.cell_states_to_model = {
|
566 |
+
"state_key": list(self.cell_states_to_model.keys())[0],
|
567 |
+
"start_state": state_values[0][0],
|
568 |
+
"goal_state": state_values[1][0],
|
569 |
+
"alt_states": state_values[2:][0]
|
570 |
+
}
|
571 |
+
elif set(self.cell_states_to_model.keys()) == {"state_key", "start_state", "goal_state", "alt_states"}:
|
572 |
+
if (self.cell_states_to_model["state_key"] is None) \
|
573 |
+
or (self.cell_states_to_model["start_state"] is None) \
|
574 |
+
or (self.cell_states_to_model["goal_state"] is None):
|
575 |
+
logger.error(
|
576 |
+
"Please specify 'state_key', 'start_state', and 'goal_state' in cell_states_to_model.")
|
577 |
+
raise
|
578 |
+
|
579 |
+
if self.cell_states_to_model["start_state"] == self.cell_states_to_model["goal_state"]:
|
580 |
+
logger.error(
|
581 |
+
"All states must be unique.")
|
582 |
+
raise
|
583 |
+
|
584 |
+
if self.cell_states_to_model["alt_states"] is not None:
|
585 |
+
if type(self.cell_states_to_model["alt_states"]) is not list:
|
586 |
+
logger.error(
|
587 |
+
"self.cell_states_to_model['alt_states'] must be a list (even if it is one element)."
|
588 |
+
)
|
589 |
+
raise
|
590 |
+
if len(self.cell_states_to_model["alt_states"])!= len(set(self.cell_states_to_model["alt_states"])):
|
591 |
+
logger.error(
|
592 |
+
"All states must be unique.")
|
593 |
+
raise
|
594 |
+
|
595 |
+
else:
|
596 |
+
logger.error(
|
597 |
+
"cell_states_to_model must only have the following four keys: " \
|
598 |
+
"'state_key', 'start_state', 'goal_state', 'alt_states'." \
|
599 |
+
"For example, cell_states_to_model={" \
|
600 |
+
"'state_key': 'disease', " \
|
601 |
+
"'start_state': 'dcm', " \
|
602 |
+
"'goal_state': 'nf', " \
|
603 |
+
"'alt_states': ['hcm', 'other1', 'other2']}"
|
604 |
+
)
|
605 |
+
raise
|
606 |
+
|
607 |
+
if self.anchor_gene is not None:
|
608 |
+
self.anchor_gene = None
|
609 |
+
logger.warning(
|
610 |
+
"anchor_gene set to None. " \
|
611 |
+
"Currently, anchor gene not available " \
|
612 |
+
"when modeling multiple cell states.")
|
613 |
+
|
614 |
+
if self.combos > 0:
|
615 |
+
if self.anchor_gene is None:
|
616 |
+
logger.error(
|
617 |
+
"Currently, stats are only supported for combination " \
|
618 |
+
"in silico perturbation run with anchor gene. Please add " \
|
619 |
+
"anchor gene when using with combos > 0. ")
|
620 |
+
raise
|
621 |
+
|
622 |
+
if (self.mode == "mixture_model") and (self.genes_perturbed != "all"):
|
623 |
+
logger.error(
|
624 |
+
"Mixture model mode requires multiple gene perturbations to fit model " \
|
625 |
+
"so is incompatible with a single grouped perturbation.")
|
626 |
+
raise
|
627 |
+
if (self.mode == "aggregate_data") and (self.genes_perturbed == "all"):
|
628 |
+
logger.error(
|
629 |
+
"Simple data aggregation mode is for single perturbation in multiple cells " \
|
630 |
+
"so is incompatible with a genes_perturbed being 'all'.")
|
631 |
+
raise
|
632 |
+
|
633 |
+
def get_stats(self,
|
634 |
+
input_data_directory,
|
635 |
+
null_dist_data_directory,
|
636 |
+
output_directory,
|
637 |
+
output_prefix,
|
638 |
+
null_dict_list=None,
|
639 |
+
recursive=False):
|
640 |
+
"""
|
641 |
+
Get stats for in silico perturbation data and save as results in output_directory.
|
642 |
+
|
643 |
+
Parameters
|
644 |
+
----------
|
645 |
+
input_data_directory : Path
|
646 |
+
Path to directory containing cos_sim dictionary inputs
|
647 |
+
null_dist_data_directory : Path
|
648 |
+
Path to directory containing null distribution cos_sim dictionary inputs
|
649 |
+
output_directory : Path
|
650 |
+
Path to directory where perturbation data will be saved as .csv
|
651 |
+
output_prefix : str
|
652 |
+
Prefix for output .csv
|
653 |
+
null_dict_list: dict
|
654 |
+
List of loaded null distribtion dictionary if more than one comparison vs. the null is to be performed
|
655 |
+
|
656 |
+
Outputs
|
657 |
+
----------
|
658 |
+
Definition of possible columns in .csv output file.
|
659 |
+
|
660 |
+
Of note, not all columns will be present in all output files.
|
661 |
+
Some columns are specific to particular perturbation modes.
|
662 |
+
|
663 |
+
"Gene": gene token
|
664 |
+
"Gene_name": gene name
|
665 |
+
"Ensembl_ID": gene Ensembl ID
|
666 |
+
"N_Detections": number of cells in which each gene or gene combination was detected in the input dataset
|
667 |
+
"Sig": 1 if FDR<0.05, otherwise 0
|
668 |
+
|
669 |
+
"Shift_to_goal_end": cosine shift from start state towards goal end state in response to given perturbation
|
670 |
+
"Shift_to_alt_end": cosine shift from start state towards alternate end state in response to given perturbation
|
671 |
+
"Goal_end_vs_random_pval": pvalue of cosine shift from start state towards goal end state by Wilcoxon
|
672 |
+
pvalue compares shift caused by perturbing given gene compared to random genes
|
673 |
+
"Alt_end_vs_random_pval": pvalue of cosine shift from start state towards alternate end state by Wilcoxon
|
674 |
+
pvalue compares shift caused by perturbing given gene compared to random genes
|
675 |
+
"Goal_end_FDR": Benjamini-Hochberg correction of "Goal_end_vs_random_pval"
|
676 |
+
"Alt_end_FDR": Benjamini-Hochberg correction of "Alt_end_vs_random_pval"
|
677 |
+
|
678 |
+
"Test_avg_shift": cosine shift in response to given perturbation in cells from test distribution
|
679 |
+
"Null_avg_shift": cosine shift in response to given perturbation in cells from null distribution (e.g. random cells)
|
680 |
+
"Test_vs_null_avg_shift": difference in cosine shift in cells from test vs. null distribution
|
681 |
+
(i.e. "Test_avg_shift" minus "Null_avg_shift")
|
682 |
+
"Test_vs_null_pval": pvalue of cosine shift in test vs. null distribution
|
683 |
+
"Test_vs_null_FDR": Benjamini-Hochberg correction of "Test_vs_null_pval"
|
684 |
+
"N_Detections_test": "N_Detections" in cells from test distribution
|
685 |
+
"N_Detections_null": "N_Detections" in cells from null distribution
|
686 |
+
|
687 |
+
"Anchor_shift": cosine shift in response to given perturbation of anchor gene
|
688 |
+
"Test_token_shift": cosine shift in response to given perturbation of test gene
|
689 |
+
"Sum_of_indiv_shifts": sum of cosine shifts in response to individually perturbing test and anchor genes
|
690 |
+
"Combo_shift": cosine shift in response to given perturbation of both anchor and test gene(s) in combination
|
691 |
+
"Combo_minus_sum_shift": difference of cosine shifts in response combo perturbation vs. sum of individual perturbations
|
692 |
+
(i.e. "Combo_shift" minus "Sum_of_indiv_shifts")
|
693 |
+
"Impact_component": whether the given perturbation was modeled to be within the impact component by the mixture model
|
694 |
+
1: within impact component; 0: not within impact component
|
695 |
+
"Impact_component_percent": percent of cells in which given perturbation was modeled to be within impact component
|
696 |
+
"""
|
697 |
+
|
698 |
+
if self.mode not in ["goal_state_shift", "vs_null", "mixture_model","aggregate_data"]:
|
699 |
+
logger.error(
|
700 |
+
"Currently, only modes available are stats for goal_state_shift, " \
|
701 |
+
"vs_null (comparing to null distribution), and " \
|
702 |
+
"mixture_model (fitting mixture model for perturbations with or without impact).")
|
703 |
+
raise
|
704 |
+
|
705 |
+
self.gene_token_id_dict = invert_dict(self.gene_token_dict)
|
706 |
+
self.gene_id_name_dict = invert_dict(self.gene_name_id_dict)
|
707 |
+
|
708 |
+
# obtain total gene list
|
709 |
+
if (self.combos == 0) and (self.anchor_token is not None):
|
710 |
+
# cos sim data for effect of gene perturbation on the embedding of each other gene
|
711 |
+
dict_list = read_dictionaries(input_data_directory, "gene", self.anchor_token, self.cell_states_to_model, self.pickle_suffix, recursive=recursive)
|
712 |
+
gene_list = get_gene_list(dict_list, "gene")
|
713 |
+
else:
|
714 |
+
# cos sim data for effect of gene perturbation on the embedding of each cell
|
715 |
+
dict_list = read_dictionaries(input_data_directory, "cell", self.anchor_token, self.cell_states_to_model, self.pickle_suffix, recursive=recursive)
|
716 |
+
gene_list = get_gene_list(dict_list, "cell")
|
717 |
+
|
718 |
+
# initiate results dataframe
|
719 |
+
cos_sims_df_initial = pd.DataFrame({"Gene": gene_list,
|
720 |
+
"Gene_name": [self.token_to_gene_name(item) \
|
721 |
+
for item in gene_list],
|
722 |
+
"Ensembl_ID": [token_tuple_to_ensembl_ids(genes, self.gene_token_id_dict) \
|
723 |
+
if self.genes_perturbed != "all" else \
|
724 |
+
self.gene_token_id_dict[genes[1]] \
|
725 |
+
if isinstance(genes,tuple) else \
|
726 |
+
self.gene_token_id_dict[genes] \
|
727 |
+
for genes in gene_list]}, \
|
728 |
+
index=[i for i in range(len(gene_list))])
|
729 |
+
|
730 |
+
if self.mode == "goal_state_shift":
|
731 |
+
cos_sims_df = isp_stats_to_goal_state(cos_sims_df_initial, dict_list, self.cell_states_to_model, self.genes_perturbed)
|
732 |
+
|
733 |
+
elif self.mode == "vs_null":
|
734 |
+
if null_dict_list is None:
|
735 |
+
null_dict_list = read_dictionaries(null_dist_data_directory, "cell", self.anchor_token, self.cell_states_to_model, self.pickle_suffix)
|
736 |
+
cos_sims_df = isp_stats_vs_null(cos_sims_df_initial, dict_list, null_dict_list)
|
737 |
+
|
738 |
+
elif self.mode == "mixture_model":
|
739 |
+
cos_sims_df = isp_stats_mixture_model(cos_sims_df_initial, dict_list, self.combos, self.anchor_token)
|
740 |
+
|
741 |
+
elif self.mode == "aggregate_data":
|
742 |
+
cos_sims_df = isp_aggregate_grouped_perturb(cos_sims_df_initial, dict_list)
|
743 |
+
|
744 |
+
# save perturbation stats to output_path
|
745 |
+
output_path = (Path(output_directory) / output_prefix).with_suffix(".csv")
|
746 |
+
cos_sims_df.to_csv(output_path)
|
747 |
+
|
748 |
+
def token_to_gene_name(self, item):
|
749 |
+
if isinstance(item,int):
|
750 |
+
return self.gene_id_name_dict.get(self.gene_token_id_dict.get(item, np.nan), np.nan)
|
751 |
+
if isinstance(item,tuple):
|
752 |
+
return tuple([self.gene_id_name_dict.get(self.gene_token_id_dict.get(i, np.nan), np.nan) for i in item])
|