File size: 4,091 Bytes
b6b2481 9d5f837 e75dcb6 9d5f837 5d791b2 9d5f837 5d791b2 9d5f837 5d791b2 9d5f837 5d791b2 9d5f837 5d791b2 d13b71e 5d791b2 61c2cc4 5d791b2 d13b71e 61c2cc4 5d791b2 9b7e9c3 5d791b2 00e8f88 61c2cc4 3009006 61c2cc4 d13b71e 61c2cc4 ae2e3a0 61c2cc4 e8409d9 61c2cc4 5d791b2 0fb42e9 5d791b2 452250c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
---
language:
- yue
license: apache-2.0
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
datasets:
- common_voice
metrics:
- cer
language_bcp47:
- zh-HK
base_model: facebook/wav2vec2-large-xlsr-53
model-index:
- name: wav2vec2-large-xlsr-cantonese
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
name: Common Voice zh-HK
type: common_voice
args: zh-HK
metrics:
- type: cer
value: 15.36
name: Test CER
---
# Wav2Vec2-Large-XLSR-53-Cantonese
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Cantonese using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "zh-HK", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("ctl/wav2vec2-large-xlsr-cantonese")
model = Wav2Vec2ForCTC.from_pretrained("ctl/wav2vec2-large-xlsr-cantonese")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Chinese (Hong Kong) test data of Common Voice.
```python
!pip install jiwer
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
import argparse
lang_id = "zh-HK"
model_id = "ctl/wav2vec2-large-xlsr-cantonese"
chars_to_ignore_regex = '[\,\?\.\!\-\;\:"\“\%\‘\”\�\.\⋯\!\-\:\–\。\》\,\)\,\?\;\~\~\…\︰\,\(\」\‧\《\﹔\、\—\/\,\「\﹖\·\']'
test_dataset = load_dataset("common_voice", f"{lang_id}", split="test")
cer = load_metric("cer")
processor = Wav2Vec2Processor.from_pretrained(f"{model_id}")
model = Wav2Vec2ForCTC.from_pretrained(f"{model_id}")
model.to("cuda")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=16)
print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 15.51 %
## Training
The Common Voice `train`, `validation` were used for training.
The script used for training will be posted [here](https://github.com/chutaklee/CantoASR)
|