File size: 1,782 Bytes
8f4ab82
1826e0e
 
19e9977
b21d000
 
 
 
 
 
 
c8c6562
b21d000
 
 
 
 
 
 
 
 
 
 
 
 
c8c6562
 
 
 
 
 
 
 
 
b21d000
8f4ab82
1826e0e
 
8f4ab82
1826e0e
8f4ab82
b64de11
1826e0e
8f4ab82
1826e0e
8f4ab82
b64de11
8f4ab82
1826e0e
8f4ab82
b64de11
8f4ab82
1826e0e
8f4ab82
1826e0e
8f4ab82
1826e0e
b64de11
 
 
1ed82e4
b64de11
 
 
 
8f4ab82
1826e0e
8f4ab82
 
 
1826e0e
8f4ab82
1826e0e
 
 
23c0f06
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
tags:
- generated_from_keras_callback
- AVeriTec
model-index:
  - name: deberta-v3-large-AVeriTeC-nli
    results:
      - task:
          type: text-classification
        dataset:
          name: chenxwh/AVeriTeC
          type: chenxwh/AVeriTeC
        metrics:
          - name: dev macro F1 score
            type: macro F1 score
            value: 0.71
          - name: dev macro recall
            type: macro recall
            value: 0.73
          - name: dev macro precision
            type: macro precision
            value: 0.71
          - name: dev accuracy
            type: accuracy
            value: 0.82 
license: mit
language:
- en
library_name: transformers
pipeline_tag: text-classification
base_model: microsoft/deberta-v3-large
datasets:
- chenxwh/AVeriTeC

---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# deberta-v3-large-AVeriTeC-nli

This model was finetuned from microsoft/deberta-v3-large on an AVeriTec dataset.
It achieves the following results on the evaluation set:

## Intended uses & limitations

This model is intended for usage in a pipeline for open-domain fact-checking task.

## Training and evaluation data

See chenxwh/AVeriTeC

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: adamw_torch
- training_precision: float16
- learning_rate: 1e-5
- per_device_train_batch_size: 32
- num_train_epochs: 10
- weight_decay: 0.01
- load_best_model_at_end: True #early stopping!
- warmup_ratio: 0.06

### Training results



### Framework versions

- Transformers 4.43.0
- TensorFlow 2.17.0
- Datasets 2.20.0
- Tokenizers 0.19.1