File size: 1,879 Bytes
50da9e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: fds
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fds

This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3905
- Accuracy: 0.56

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.6209        | 1.0   | 38   | 1.4462          | 0.41     |
| 0.8673        | 2.0   | 76   | 1.1689          | 0.51     |
| 0.6475        | 3.0   | 114  | 1.3775          | 0.44     |
| 0.5407        | 4.0   | 152  | 1.3013          | 0.53     |
| 0.3553        | 5.0   | 190  | 1.7230          | 0.43     |
| 0.1386        | 6.0   | 228  | 1.8322          | 0.51     |
| 0.0187        | 7.0   | 266  | 2.2416          | 0.5      |
| 0.0096        | 8.0   | 304  | 2.3357          | 0.53     |
| 0.0056        | 9.0   | 342  | 2.3856          | 0.56     |
| 0.0046        | 10.0  | 380  | 2.3905          | 0.56     |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1