culteejen commited on
Commit
87ccc24
1 Parent(s): 818816d

Upload model to Hugging Face

Browse files
BC-from-behavior-cloning.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc041e274ab9f8f60ff90c9ae24d420ac7a8bf1a7587279858164dd550203016
3
+ size 44103
BC-from-behavior-cloning/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
BC-from-behavior-cloning/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff4e43f5240>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff4e43f52d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff4e43f5360>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff4e43f53f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff4e43f5480>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff4e43f5510>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff4e43f55a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff4e43f5630>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff4e43f56c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff4e43f5750>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff4e43f57e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff4e43f5870>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ff4e43e2c80>"
21
+ },
22
+ "verbose": true,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 10
30
+ ],
31
+ "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]",
32
+ "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]",
33
+ "bounded_below": "[ True True True True True True True True True True]",
34
+ "bounded_above": "[ True True True True True True True True True True]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 4,
46
+ "num_timesteps": 106496,
47
+ "_total_timesteps": 100000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1681847579307834707,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAKl3hUNFWtC9AADIQi2BSULeyaRCQeQ6QgAAyEIAAMhCAADIQtvhlUKxOHZDeFICvwAAyEL8rTxCwj4hQvytPEIAAIJCAADIQgAAyELEA4hCFmiSQ5wRLz5X0qtCpvSJQm6RG0IAAMhCAADIQgAAyEIAAMhCBZ+5QqzZXkPoEAU+AADIQuxZIUJGSjhCdbCpQgAAyEIAAMhCQE4iQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.0649599999999999,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVXxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwZDVrd6bg8CUhpRSlIwBbJRLy4wBdJRHQHKAEPczqKR1fZQoaAZoCWgPQwh6pSxDHBFlwJSGlFKUaBVNLQFoFkdAcoCSQYDT0HV9lChoBmgJaA9DCBvzOuKQemHAlIaUUpRoFU0tAWgWR0ByiwijcmBwdX2UKGgGaAloD0MIg9vawvNcW8CUhpRSlGgVTS0BaBZHQHKO7Xg9/z91fZQoaAZoCWgPQwgxs89jlB5bwJSGlFKUaBVLjmgWR0BykHkwN9YwdX2UKGgGaAloD0MI1/fhICFbgMCUhpRSlGgVSx1oFkdAcpHpVS4vvnV9lChoBmgJaA9DCBNgWP4cXoPAlIaUUpRoFUu1aBZHQHKUhWDHwPR1fZQoaAZoCWgPQwhpi2t8houAwJSGlFKUaBVLKWgWR0ByllNM495hdX2UKGgGaAloD0MIll0wuGbaZMCUhpRSlGgVTRgBaBZHQHKtP8hs67x1fZQoaAZoCWgPQwgwvf256FhhwJSGlFKUaBVL7WgWR0ByrtYU34sVdX2UKGgGaAloD0MI4lmCjACQYMCUhpRSlGgVS8toFkdAcrHVWS2Yv3V9lChoBmgJaA9DCHi5iO/EXYDAlIaUUpRoFUtnaBZHQHK9wKKHfuV1fZQoaAZoCWgPQwi1p+Sc2JNawJSGlFKUaBVNLQFoFkdAcr8ur6tT1nV9lChoBmgJaA9DCI7NjlS/t4DAlIaUUpRoFUs2aBZHQHLJpWFN+LF1fZQoaAZoCWgPQwiYw+47xsWAwJSGlFKUaBVLhmgWR0By5lDc/MW5dX2UKGgGaAloD0MIX8/XLJeIZcCUhpRSlGgVTScBaBZHQHLn/c8DB/J1fZQoaAZoCWgPQwj8/s2LE5hYwJSGlFKUaBVNLQFoFkdAcuyXlbNbDHV9lChoBmgJaA9DCAFp/wOsTljAlIaUUpRoFU0tAWgWR0By+pSDRMN+dX2UKGgGaAloD0MI91eP+/YogMCUhpRSlGgVSxBoFkdAcv3DTSb6QHV9lChoBmgJaA9DCInvxKyXaWLAlIaUUpRoFUvvaBZHQHMeExEfDDV1fZQoaAZoCWgPQwgHXi13Zi1YwJSGlFKUaBVNLQFoFkdAcyS5O8Cgb3V9lChoBmgJaA9DCL3+JD53j1fAlIaUUpRoFU0tAWgWR0BzJlJXhfjTdX2UKGgGaAloD0MIL204LO1bgMCUhpRSlGgVSx9oFkdAcyvFjd56dHV9lChoBmgJaA9DCD8cJER5IoLAlIaUUpRoFUv8aBZHQHMxDdgv1151fZQoaAZoCWgPQwjY9Qt2w8dXwJSGlFKUaBVLd2gWR0BzNYB91EE1dX2UKGgGaAloD0MIdF5jl8gygMCUhpRSlGgVSxVoFkdAczW2HLzPKXV9lChoBmgJaA9DCB1VTRD1OYDAlIaUUpRoFUsbaBZHQHM7hI4EOiF1fZQoaAZoCWgPQwjgZvFiYf5lwJSGlFKUaBVNLQFoFkdAc2LVtoBaLXV9lChoBmgJaA9DCNGuQspP/FnAlIaUUpRoFU0tAWgWR0Bzau94/u9fdX2UKGgGaAloD0MISDSBIpYrZMCUhpRSlGgVTS0BaBZHQHNyXXAdn011fZQoaAZoCWgPQwgOu+8YXqaAwJSGlFKUaBVLcmgWR0BzdZ3mmtQsdX2UKGgGaAloD0MI22tB740xY8CUhpRSlGgVTS0BaBZHQHN16IacZtN1fZQoaAZoCWgPQwiwcf27Pt9jwJSGlFKUaBVNLQFoFkdAc5bx+KCQLnV9lChoBmgJaA9DCE29bhEYc3/AlIaUUpRoFUshaBZHQHOcLZvkzXV1fZQoaAZoCWgPQwii725liWhgwJSGlFKUaBVNLQFoFkdAc54rWAf+0nV9lChoBmgJaA9DCNXt7CuPt2LAlIaUUpRoFU0tAWgWR0BzoIwL3K0VdX2UKGgGaAloD0MIgosVNZhaWsCUhpRSlGgVTS0BaBZHQHOg20zCUHJ1fZQoaAZoCWgPQwhtxmmISs+AwJSGlFKUaBVLi2gWR0B0IMyylenidX2UKGgGaAloD0MIPUm6ZrIugMCUhpRSlGgVSxloFkdAdCSH8jzI3nV9lChoBmgJaA9DCFQB9zyf5oPAlIaUUpRoFU0BAWgWR0B0NyAG0NSZdX2UKGgGaAloD0MI9MRztsCpf8CUhpRSlGgVSy9oFkdAdD/QEpy6tnV9lChoBmgJaA9DCMvz4O6s/FzAlIaUUpRoFU0tAWgWR0B0Q4V9F4LUdX2UKGgGaAloD0MINV66SQx8X8CUhpRSlGgVTS0BaBZHQHREDdHlOoJ1fZQoaAZoCWgPQwic+GpHcTJiwJSGlFKUaBVNLQFoFkdAdFfc/t6X0HV9lChoBmgJaA9DCB+94T5yJl/AlIaUUpRoFUvdaBZHQHRjQbVBlc11fZQoaAZoCWgPQwg1f0xr0+NawJSGlFKUaBVNLQFoFkdAdGoCkXUH6nV9lChoBmgJaA9DCLcLzXUa/FnAlIaUUpRoFU0tAWgWR0B0a8uUUwi8dX2UKGgGaAloD0MICvSJPMlmZMCUhpRSlGgVTS0BaBZHQHR6SxRl6JJ1fZQoaAZoCWgPQwjdzynIL/uAwJSGlFKUaBVLlGgWR0B0fCIbfgrIdX2UKGgGaAloD0MIqBq9GiCqY8CUhpRSlGgVTSkBaBZHQHSIL1M/QjV1fZQoaAZoCWgPQwheDrvvGJdgwJSGlFKUaBVL3mgWR0B0iJbpu/DcdX2UKGgGaAloD0MIB7e1hQcTgcCUhpRSlGgVS4loFkdAdJAMYdhiLHV9lChoBmgJaA9DCIqryr4rpWPAlIaUUpRoFU0tAWgWR0B0qUqhDgIhdX2UKGgGaAloD0MIgZTYtT1TYcCUhpRSlGgVTQcBaBZHQHS1uZ9d/rl1fZQoaAZoCWgPQwhKfO4E+wFhwJSGlFKUaBVNLQFoFkdAdLtViWmgrnV9lChoBmgJaA9DCAsIrYevHmLAlIaUUpRoFU0tAWgWR0B0wj2mHgxbdX2UKGgGaAloD0MIMSQnEzdBY8CUhpRSlGgVTRcBaBZHQHTYEnPVurJ1fZQoaAZoCWgPQwg9mBQfn4KAwJSGlFKUaBVLTWgWR0B05ECzTnaGdX2UKGgGaAloD0MIwtuDEJC8XsCUhpRSlGgVTS0BaBZHQHTloBRyfcx1fZQoaAZoCWgPQwhz275H/btYwJSGlFKUaBVNLQFoFkdAdOxz/6wdKnV9lChoBmgJaA9DCO8DkNrEt2HAlIaUUpRoFU0tAWgWR0B09AauOjqOdX2UKGgGaAloD0MI0qkrn4UlgMCUhpRSlGgVS0hoFkdAdQDdyT6i03V9lChoBmgJaA9DCH+D9uqjioHAlIaUUpRoFUvIaBZHQHUIK7qY7aJ1fZQoaAZoCWgPQwhd+pek8pWAwJSGlFKUaBVLY2gWR0B1GpdLQHAzdX2UKGgGaAloD0MIpTFaR1VYYsCUhpRSlGgVTS0BaBZHQHUch4IKMNt1fZQoaAZoCWgPQwj8/s2Lk6ZgwJSGlFKUaBVNLQFoFkdAdSJzMA3kxXV9lChoBmgJaA9DCA2LUdfa42LAlIaUUpRoFU0tAWgWR0B1OE+4b0e2dX2UKGgGaAloD0MITN2VXTATYcCUhpRSlGgVTS0BaBZHQHVMo95hScd1fZQoaAZoCWgPQwjUSEvl7SpbwJSGlFKUaBVNLQFoFkdAdU6UKzAvc3V9lChoBmgJaA9DCPZefNG+OIHAlIaUUpRoFUugaBZHQHVQT7655JN1fZQoaAZoCWgPQwjGpwAYz2diwJSGlFKUaBVNLQFoFkdAdVPoc7yQP3V9lChoBmgJaA9DCI/k8h9SyX/AlIaUUpRoFUsuaBZHQHVcsfNiYsx1fZQoaAZoCWgPQwjUYvAw7WBdwJSGlFKUaBVNLQFoFkdAdhnUKArhBXV9lChoBmgJaA9DCGSSkbOwImDAlIaUUpRoFU0tAWgWR0B2HHWQOnVHdX2UKGgGaAloD0MIFM5uLTNgg8CUhpRSlGgVTSoBaBZHQHYeBd2PkrB1fZQoaAZoCWgPQwi9/iQ+dzVgwJSGlFKUaBVNLQFoFkdAdioIomXw9nV9lChoBmgJaA9DCBMLfEW3813AlIaUUpRoFU0tAWgWR0B2REwAU+LWdX2UKGgGaAloD0MI7Sqk/KS9YcCUhpRSlGgVTS0BaBZHQHZF5TMqz7d1fZQoaAZoCWgPQwgMPzifug1gwJSGlFKUaBVNLQFoFkdAdkbuQIUrTnV9lChoBmgJaA9DCDhOCvMeEljAlIaUUpRoFU0tAWgWR0B2Us2MsH0LdX2UKGgGaAloD0MIRRK9jELTgcCUhpRSlGgVS5hoFkdAdmADU3GXHHV9lChoBmgJaA9DCMv1tpkKPV/AlIaUUpRoFU0tAWgWR0B2elLnLaEjdX2UKGgGaAloD0MI3nU25J+FW8CUhpRSlGgVTS0BaBZHQHZ+cyzolld1fZQoaAZoCWgPQwjCE3r9SZtfwJSGlFKUaBVNLQFoFkdAdot5yEL6UXV9lChoBmgJaA9DCCCySBOP64DAlIaUUpRoFUtRaBZHQHaMqoAGSp11fZQoaAZoCWgPQwhMNEjBU3VbwJSGlFKUaBVNLQFoFkdAdpjqCpWFOHV9lChoBmgJaA9DCB6HwfwVTF3AlIaUUpRoFU0tAWgWR0B2tXE4vN/wdX2UKGgGaAloD0MIWkV/aObjWsCUhpRSlGgVTS0BaBZHQHbI3fZVXFN1fZQoaAZoCWgPQwhCP1OvW19ewJSGlFKUaBVNLQFoFkdAdsq8BMi8nXV9lChoBmgJaA9DCClZTkLpTl/AlIaUUpRoFU0tAWgWR0B22AKqn3tbdX2UKGgGaAloD0MINKFJYkl9YMCUhpRSlGgVTS0BaBZHQHb02DlHSWt1fZQoaAZoCWgPQwh1OpD11LxawJSGlFKUaBVNLQFoFkdAdwk8Gs3hoHV9lChoBmgJaA9DCIV5jzPNAGLAlIaUUpRoFU0tAWgWR0B3CzdrO7g9dX2UKGgGaAloD0MIP1dbsb8VYMCUhpRSlGgVTS0BaBZHQHcS6YRdyDJ1fZQoaAZoCWgPQwikjo6rkexbwJSGlFKUaBVNLQFoFkdAdyL4mTkhinV9lChoBmgJaA9DCBR15h4S/mDAlIaUUpRoFU0tAWgWR0B3LmetjkMkdX2UKGgGaAloD0MIRFILJZMWYsCUhpRSlGgVTS0BaBZHQHcvUDEFW4p1fZQoaAZoCWgPQwjbvkf99aBbwJSGlFKUaBVNLQFoFkdAdzb69CeEqXV9lChoBmgJaA9DCLSqJR3lClfAlIaUUpRoFU0tAWgWR0B3R+fDk2gndX2UKGgGaAloD0MIMsaH2cssXcCUhpRSlGgVTS0BaBZHQHdW01IiC8R1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 130,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
BC-from-behavior-cloning/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3fd59f6c3430c638d1fa6a5afa0e0e90821f6fdc206ccc06d35702d30a01b45
3
+ size 18973
BC-from-behavior-cloning/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e59fae74429051d4a24082aece91423b83d1cc346c650fdf37566904af27bc57
3
+ size 9295
BC-from-behavior-cloning/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
BC-from-behavior-cloning/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2
2
+ - Python: 3.10.9
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 2.0.0
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - RoombaAToB-from-behavior-cloning
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: BC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: RoombaAToB-from-behavior-cloning
16
+ type: RoombaAToB-from-behavior-cloning
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -486.68 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **BC** Agent playing **RoombaAToB-from-behavior-cloning**
25
+ This is a trained model of a **BC** agent playing **RoombaAToB-from-behavior-cloning**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff4e43f5240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff4e43f52d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff4e43f5360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff4e43f53f0>", "_build": "<function ActorCriticPolicy._build at 0x7ff4e43f5480>", "forward": "<function ActorCriticPolicy.forward at 0x7ff4e43f5510>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff4e43f55a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff4e43f5630>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff4e43f56c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff4e43f5750>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff4e43f57e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff4e43f5870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff4e43e2c80>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 106496, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681847579307834707, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAKl3hUNFWtC9AADIQi2BSULeyaRCQeQ6QgAAyEIAAMhCAADIQtvhlUKxOHZDeFICvwAAyEL8rTxCwj4hQvytPEIAAIJCAADIQgAAyELEA4hCFmiSQ5wRLz5X0qtCpvSJQm6RG0IAAMhCAADIQgAAyEIAAMhCBZ+5QqzZXkPoEAU+AADIQuxZIUJGSjhCdbCpQgAAyEIAAMhCQE4iQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVXxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwZDVrd6bg8CUhpRSlIwBbJRLy4wBdJRHQHKAEPczqKR1fZQoaAZoCWgPQwh6pSxDHBFlwJSGlFKUaBVNLQFoFkdAcoCSQYDT0HV9lChoBmgJaA9DCBvzOuKQemHAlIaUUpRoFU0tAWgWR0ByiwijcmBwdX2UKGgGaAloD0MIg9vawvNcW8CUhpRSlGgVTS0BaBZHQHKO7Xg9/z91fZQoaAZoCWgPQwgxs89jlB5bwJSGlFKUaBVLjmgWR0BykHkwN9YwdX2UKGgGaAloD0MI1/fhICFbgMCUhpRSlGgVSx1oFkdAcpHpVS4vvnV9lChoBmgJaA9DCBNgWP4cXoPAlIaUUpRoFUu1aBZHQHKUhWDHwPR1fZQoaAZoCWgPQwhpi2t8houAwJSGlFKUaBVLKWgWR0ByllNM495hdX2UKGgGaAloD0MIll0wuGbaZMCUhpRSlGgVTRgBaBZHQHKtP8hs67x1fZQoaAZoCWgPQwgwvf256FhhwJSGlFKUaBVL7WgWR0ByrtYU34sVdX2UKGgGaAloD0MI4lmCjACQYMCUhpRSlGgVS8toFkdAcrHVWS2Yv3V9lChoBmgJaA9DCHi5iO/EXYDAlIaUUpRoFUtnaBZHQHK9wKKHfuV1fZQoaAZoCWgPQwi1p+Sc2JNawJSGlFKUaBVNLQFoFkdAcr8ur6tT1nV9lChoBmgJaA9DCI7NjlS/t4DAlIaUUpRoFUs2aBZHQHLJpWFN+LF1fZQoaAZoCWgPQwiYw+47xsWAwJSGlFKUaBVLhmgWR0By5lDc/MW5dX2UKGgGaAloD0MIX8/XLJeIZcCUhpRSlGgVTScBaBZHQHLn/c8DB/J1fZQoaAZoCWgPQwj8/s2LE5hYwJSGlFKUaBVNLQFoFkdAcuyXlbNbDHV9lChoBmgJaA9DCAFp/wOsTljAlIaUUpRoFU0tAWgWR0By+pSDRMN+dX2UKGgGaAloD0MI91eP+/YogMCUhpRSlGgVSxBoFkdAcv3DTSb6QHV9lChoBmgJaA9DCInvxKyXaWLAlIaUUpRoFUvvaBZHQHMeExEfDDV1fZQoaAZoCWgPQwgHXi13Zi1YwJSGlFKUaBVNLQFoFkdAcyS5O8Cgb3V9lChoBmgJaA9DCL3+JD53j1fAlIaUUpRoFU0tAWgWR0BzJlJXhfjTdX2UKGgGaAloD0MIL204LO1bgMCUhpRSlGgVSx9oFkdAcyvFjd56dHV9lChoBmgJaA9DCD8cJER5IoLAlIaUUpRoFUv8aBZHQHMxDdgv1151fZQoaAZoCWgPQwjY9Qt2w8dXwJSGlFKUaBVLd2gWR0BzNYB91EE1dX2UKGgGaAloD0MIdF5jl8gygMCUhpRSlGgVSxVoFkdAczW2HLzPKXV9lChoBmgJaA9DCB1VTRD1OYDAlIaUUpRoFUsbaBZHQHM7hI4EOiF1fZQoaAZoCWgPQwjgZvFiYf5lwJSGlFKUaBVNLQFoFkdAc2LVtoBaLXV9lChoBmgJaA9DCNGuQspP/FnAlIaUUpRoFU0tAWgWR0Bzau94/u9fdX2UKGgGaAloD0MISDSBIpYrZMCUhpRSlGgVTS0BaBZHQHNyXXAdn011fZQoaAZoCWgPQwgOu+8YXqaAwJSGlFKUaBVLcmgWR0BzdZ3mmtQsdX2UKGgGaAloD0MI22tB740xY8CUhpRSlGgVTS0BaBZHQHN16IacZtN1fZQoaAZoCWgPQwiwcf27Pt9jwJSGlFKUaBVNLQFoFkdAc5bx+KCQLnV9lChoBmgJaA9DCE29bhEYc3/AlIaUUpRoFUshaBZHQHOcLZvkzXV1fZQoaAZoCWgPQwii725liWhgwJSGlFKUaBVNLQFoFkdAc54rWAf+0nV9lChoBmgJaA9DCNXt7CuPt2LAlIaUUpRoFU0tAWgWR0BzoIwL3K0VdX2UKGgGaAloD0MIgosVNZhaWsCUhpRSlGgVTS0BaBZHQHOg20zCUHJ1fZQoaAZoCWgPQwhtxmmISs+AwJSGlFKUaBVLi2gWR0B0IMyylenidX2UKGgGaAloD0MIPUm6ZrIugMCUhpRSlGgVSxloFkdAdCSH8jzI3nV9lChoBmgJaA9DCFQB9zyf5oPAlIaUUpRoFU0BAWgWR0B0NyAG0NSZdX2UKGgGaAloD0MI9MRztsCpf8CUhpRSlGgVSy9oFkdAdD/QEpy6tnV9lChoBmgJaA9DCMvz4O6s/FzAlIaUUpRoFU0tAWgWR0B0Q4V9F4LUdX2UKGgGaAloD0MINV66SQx8X8CUhpRSlGgVTS0BaBZHQHREDdHlOoJ1fZQoaAZoCWgPQwic+GpHcTJiwJSGlFKUaBVNLQFoFkdAdFfc/t6X0HV9lChoBmgJaA9DCB+94T5yJl/AlIaUUpRoFUvdaBZHQHRjQbVBlc11fZQoaAZoCWgPQwg1f0xr0+NawJSGlFKUaBVNLQFoFkdAdGoCkXUH6nV9lChoBmgJaA9DCLcLzXUa/FnAlIaUUpRoFU0tAWgWR0B0a8uUUwi8dX2UKGgGaAloD0MICvSJPMlmZMCUhpRSlGgVTS0BaBZHQHR6SxRl6JJ1fZQoaAZoCWgPQwjdzynIL/uAwJSGlFKUaBVLlGgWR0B0fCIbfgrIdX2UKGgGaAloD0MIqBq9GiCqY8CUhpRSlGgVTSkBaBZHQHSIL1M/QjV1fZQoaAZoCWgPQwheDrvvGJdgwJSGlFKUaBVL3mgWR0B0iJbpu/DcdX2UKGgGaAloD0MIB7e1hQcTgcCUhpRSlGgVS4loFkdAdJAMYdhiLHV9lChoBmgJaA9DCIqryr4rpWPAlIaUUpRoFU0tAWgWR0B0qUqhDgIhdX2UKGgGaAloD0MIgZTYtT1TYcCUhpRSlGgVTQcBaBZHQHS1uZ9d/rl1fZQoaAZoCWgPQwhKfO4E+wFhwJSGlFKUaBVNLQFoFkdAdLtViWmgrnV9lChoBmgJaA9DCAsIrYevHmLAlIaUUpRoFU0tAWgWR0B0wj2mHgxbdX2UKGgGaAloD0MIMSQnEzdBY8CUhpRSlGgVTRcBaBZHQHTYEnPVurJ1fZQoaAZoCWgPQwg9mBQfn4KAwJSGlFKUaBVLTWgWR0B05ECzTnaGdX2UKGgGaAloD0MIwtuDEJC8XsCUhpRSlGgVTS0BaBZHQHTloBRyfcx1fZQoaAZoCWgPQwhz275H/btYwJSGlFKUaBVNLQFoFkdAdOxz/6wdKnV9lChoBmgJaA9DCO8DkNrEt2HAlIaUUpRoFU0tAWgWR0B09AauOjqOdX2UKGgGaAloD0MI0qkrn4UlgMCUhpRSlGgVS0hoFkdAdQDdyT6i03V9lChoBmgJaA9DCH+D9uqjioHAlIaUUpRoFUvIaBZHQHUIK7qY7aJ1fZQoaAZoCWgPQwhd+pek8pWAwJSGlFKUaBVLY2gWR0B1GpdLQHAzdX2UKGgGaAloD0MIpTFaR1VYYsCUhpRSlGgVTS0BaBZHQHUch4IKMNt1fZQoaAZoCWgPQwj8/s2Lk6ZgwJSGlFKUaBVNLQFoFkdAdSJzMA3kxXV9lChoBmgJaA9DCA2LUdfa42LAlIaUUpRoFU0tAWgWR0B1OE+4b0e2dX2UKGgGaAloD0MITN2VXTATYcCUhpRSlGgVTS0BaBZHQHVMo95hScd1fZQoaAZoCWgPQwjUSEvl7SpbwJSGlFKUaBVNLQFoFkdAdU6UKzAvc3V9lChoBmgJaA9DCPZefNG+OIHAlIaUUpRoFUugaBZHQHVQT7655JN1fZQoaAZoCWgPQwjGpwAYz2diwJSGlFKUaBVNLQFoFkdAdVPoc7yQP3V9lChoBmgJaA9DCI/k8h9SyX/AlIaUUpRoFUsuaBZHQHVcsfNiYsx1fZQoaAZoCWgPQwjUYvAw7WBdwJSGlFKUaBVNLQFoFkdAdhnUKArhBXV9lChoBmgJaA9DCGSSkbOwImDAlIaUUpRoFU0tAWgWR0B2HHWQOnVHdX2UKGgGaAloD0MIFM5uLTNgg8CUhpRSlGgVTSoBaBZHQHYeBd2PkrB1fZQoaAZoCWgPQwi9/iQ+dzVgwJSGlFKUaBVNLQFoFkdAdioIomXw9nV9lChoBmgJaA9DCBMLfEW3813AlIaUUpRoFU0tAWgWR0B2REwAU+LWdX2UKGgGaAloD0MI7Sqk/KS9YcCUhpRSlGgVTS0BaBZHQHZF5TMqz7d1fZQoaAZoCWgPQwgMPzifug1gwJSGlFKUaBVNLQFoFkdAdkbuQIUrTnV9lChoBmgJaA9DCDhOCvMeEljAlIaUUpRoFU0tAWgWR0B2Us2MsH0LdX2UKGgGaAloD0MIRRK9jELTgcCUhpRSlGgVS5hoFkdAdmADU3GXHHV9lChoBmgJaA9DCMv1tpkKPV/AlIaUUpRoFU0tAWgWR0B2elLnLaEjdX2UKGgGaAloD0MI3nU25J+FW8CUhpRSlGgVTS0BaBZHQHZ+cyzolld1fZQoaAZoCWgPQwjCE3r9SZtfwJSGlFKUaBVNLQFoFkdAdot5yEL6UXV9lChoBmgJaA9DCCCySBOP64DAlIaUUpRoFUtRaBZHQHaMqoAGSp11fZQoaAZoCWgPQwhMNEjBU3VbwJSGlFKUaBVNLQFoFkdAdpjqCpWFOHV9lChoBmgJaA9DCB6HwfwVTF3AlIaUUpRoFU0tAWgWR0B2tXE4vN/wdX2UKGgGaAloD0MIWkV/aObjWsCUhpRSlGgVTS0BaBZHQHbI3fZVXFN1fZQoaAZoCWgPQwhCP1OvW19ewJSGlFKUaBVNLQFoFkdAdsq8BMi8nXV9lChoBmgJaA9DCClZTkLpTl/AlIaUUpRoFU0tAWgWR0B22AKqn3tbdX2UKGgGaAloD0MINKFJYkl9YMCUhpRSlGgVTS0BaBZHQHb02DlHSWt1fZQoaAZoCWgPQwh1OpD11LxawJSGlFKUaBVNLQFoFkdAdwk8Gs3hoHV9lChoBmgJaA9DCIV5jzPNAGLAlIaUUpRoFU0tAWgWR0B3CzdrO7g9dX2UKGgGaAloD0MIP1dbsb8VYMCUhpRSlGgVTS0BaBZHQHcS6YRdyDJ1fZQoaAZoCWgPQwikjo6rkexbwJSGlFKUaBVNLQFoFkdAdyL4mTkhinV9lChoBmgJaA9DCBR15h4S/mDAlIaUUpRoFU0tAWgWR0B3LmetjkMkdX2UKGgGaAloD0MIRFILJZMWYsCUhpRSlGgVTS0BaBZHQHcvUDEFW4p1fZQoaAZoCWgPQwjbvkf99aBbwJSGlFKUaBVNLQFoFkdAdzb69CeEqXV9lChoBmgJaA9DCLSqJR3lClfAlIaUUpRoFU0tAWgWR0B3R+fDk2gndX2UKGgGaAloD0MIMsaH2cssXcCUhpRSlGgVTS0BaBZHQHdW01IiC8R1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 130, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (537 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -486.677677154541, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-18T12:59:25.875599"}