Upload model to Hugging Face
Browse files- BC-harcodemap-punish-stagnant-no-training.zip +2 -2
- BC-harcodemap-punish-stagnant-no-training/data +16 -16
- BC-harcodemap-punish-stagnant-no-training/policy.optimizer.pth +1 -1
- BC-harcodemap-punish-stagnant-no-training/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
BC-harcodemap-punish-stagnant-no-training.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74afd7189efbb7c0eefd851f4d5054709f597d97b7de88387963215cf4fc5a46
|
3 |
+
size 44130
|
BC-harcodemap-punish-stagnant-no-training/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
@@ -48,7 +48,7 @@
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -70,7 +70,7 @@
|
|
70 |
"_current_progress_remaining": -0.1468799999999999,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fbb916e91b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbb916e9240>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbb916e92d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbb916e9360>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fbb916e93f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fbb916e9480>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbb916e9510>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbb916e95a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fbb916e9630>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbb916e96c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbb916e9750>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbb916e97e0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fbb916d5fc0>"
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1681939872464391267,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAACNdiUJJS56/AADIQqrG7EHTBPpBXgxNQgAAyEIAAMhCAADIQgAAyEKRIfRCIIL6vhFkuEJy+3xCAADIQprsJEKa7CRCFmhXQgAAyEIAAMhCDiSUQiqU+b/vVzFCggK6QgAAyEKCWkJCAADIQgAAyEIAAMhCAADIQoLYAENDyQ1AAADIQgAAyEIAAMhCAADIQgAAyEIoUJpCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
70 |
"_current_progress_remaining": -0.1468799999999999,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXfqXpDJFT0CUhpRSlIwBbJRNLQGMAXSUR0BZBnEqDsdDdX2UKGgGaAloD0MI0clS6/0G+7+UhpRSlGgVTS0BaBZHQFl67CBPKuB1fZQoaAZoCWgPQwg6CDpa1YIQwJSGlFKUaBVNLQFoFkdAWYIpsoDxLHV9lChoBmgJaA9DCPYlGw+2UkxAlIaUUpRoFU0tAWgWR0BZhquKXOW0dX2UKGgGaAloD0MI/kRlw5rwS0CUhpRSlGgVTS0BaBZHQFnpRQJokAx1fZQoaAZoCWgPQwinBprPOYiCwJSGlFKUaBVNAAFoFkdAWju0jTrmhnV9lChoBmgJaA9DCBk8TPvm1jJAlIaUUpRoFU0tAWgWR0BaZayfL9uQdX2UKGgGaAloD0MIvf4kPnfIS0CUhpRSlGgVTS0BaBZHQFppqdYnv2J1fZQoaAZoCWgPQwikchO1NKZQQJSGlFKUaBVNLQFoFkdAWsRD5TIeYHV9lChoBmgJaA9DCNZuu9BcYzBAlIaUUpRoFU0tAWgWR0Ba9mVVxS5zdX2UKGgGaAloD0MIOPdXj/u+RUCUhpRSlGgVTS0BaBZHQFsOnuiN83N1fZQoaAZoCWgPQwjle0YiNA5BQJSGlFKUaBVNLQFoFkdAWxFYNiH6/XV9lChoBmgJaA9DCM44DVGFXlNAlIaUUpRoFU0tAWgWR0BbTovexfOVdX2UKGgGaAloD0MIqAAYz6Chx7+UhpRSlGgVTS0BaBZHQF1ys90Rvm51fZQoaAZoCWgPQwhEotCy7tdHQJSGlFKUaBVNLQFoFkdAXZwxrSE123V9lChoBmgJaA9DCAdeLXdm6ktAlIaUUpRoFU0tAWgWR0BdoIRNATqTdX2UKGgGaAloD0MIRWeZRSgaMsCUhpRSlGgVTS0BaBZHQF4P4m1IAfd1fZQoaAZoCWgPQwgaGeQugq6AwJSGlFKUaBVNBAFoFkdAXj/R2KVIJHV9lChoBmgJaA9DCANC6+HLpB/AlIaUUpRoFU0tAWgWR0Beb7KRuCPIdX2UKGgGaAloD0MIPKWD9X9KRcCUhpRSlGgVTS0BaBZHQF5xO8TSLIh1fZQoaAZoCWgPQwijrrX3KaCAwJSGlFKUaBVL/GgWR0Bel2eYlY2bdX2UKGgGaAloD0MIrFW7JmRSf8CUhpRSlGgVTQkBaBZHQF6zEDhcZ+B1fZQoaAZoCWgPQwhVMCqpE+AdwJSGlFKUaBVNLQFoFkdAXuU+otL+P3V9lChoBmgJaA9DCIGWrmAbllLAlIaUUpRoFU0tAWgWR0Be6Ii9qUNbdX2UKGgGaAloD0MIpRZKJqdaQkCUhpRSlGgVTS0BaBZHQF8Rn6Eal1t1fZQoaAZoCWgPQwjqlbIMcZwfwJSGlFKUaBVNLQFoFkdAXzU+aBqbjXV9lChoBmgJaA9DCHjt0obDmiJAlIaUUpRoFU0tAWgWR0BfhtsabWmQdX2UKGgGaAloD0MIMbWlDvKKRsCUhpRSlGgVTS0BaBZHQF+KhKlHjId1fZQoaAZoCWgPQwgDQYAMHRlDwJSGlFKUaBVNLQFoFkdAX8U/Vy3kP3V9lChoBmgJaA9DCKSrdHd9QIHAlIaUUpRoFU0cAWgWR0Bf7XRPXTVldX2UKGgGaAloD0MIfuGVJE/7fsCUhpRSlGgVS7toFkdAYAC5U96kZnV9lChoBmgJaA9DCNmWAWcpyUdAlIaUUpRoFU0tAWgWR0BgJPPC2tuDdX2UKGgGaAloD0MIBDxp4bJ6KcCUhpRSlGgVTS0BaBZHQGBFIy9EkSp1fZQoaAZoCWgPQwiocASpFJsnwJSGlFKUaBVNLQFoFkdAYFanQY1pCnV9lChoBmgJaA9DCJ1KBoBq6H/AlIaUUpRoFU0cAWgWR0BgXJhttQ9BdX2UKGgGaAloD0MIs0KR7ueaUECUhpRSlGgVTS0BaBZHQGCP4SYgJTl1fZQoaAZoCWgPQwgIVWr2QFshwJSGlFKUaBVNLQFoFkdAYK7DG96C2HV9lChoBmgJaA9DCLOVl/xPGkVAlIaUUpRoFU0tAWgWR0BgviWE9MbndX2UKGgGaAloD0MIOpLLf0hnK8CUhpRSlGgVTS0BaBZHQGDESk0rK/51fZQoaAZoCWgPQwj2X+emrd2AwJSGlFKUaBVLxWgWR0Bg6voRqXWwdX2UKGgGaAloD0MIaqUQyCUeIcCUhpRSlGgVTS0BaBZHQGDuNN8E3bV1fZQoaAZoCWgPQwg6lQwAVUQgQJSGlFKUaBVNLQFoFkdAYckYG+sYEXV9lChoBmgJaA9DCMF0WrcBk4PAlIaUUpRoFUuiaBZHQGHOGrsByS51fZQoaAZoCWgPQwjEPgEUIw8xwJSGlFKUaBVNLQFoFkdAYc8L5RCQcXV9lChoBmgJaA9DCK2HLxN14ZNAlIaUUpRoFUvcaBZHQGHeFXJYDDF1fZQoaAZoCWgPQwi0O6QYoKFjwJSGlFKUaBVNLQFoFkdAYiC1OTJQtXV9lChoBmgJaA9DCNbHQ99dOmDAlIaUUpRoFU0tAWgWR0BiJUep4rz5dX2UKGgGaAloD0MIejarPlcLWcCUhpRSlGgVTS0BaBZHQGImU5U96kZ1fZQoaAZoCWgPQwiifhe2ZhlGwJSGlFKUaBVNLQFoFkdAYjf3t8eCCnV9lChoBmgJaA9DCDiGAODYV0/AlIaUUpRoFU0tAWgWR0Bif6VGCqZMdX2UKGgGaAloD0MI1GNbBlxgdUCUhpRSlGgVTS0BaBZHQGKExQzk6tF1fZQoaAZoCWgPQwjLnC6LiRxvwJSGlFKUaBVNLQFoFkdAYoXRQ79ycXV9lChoBmgJaA9DCKTBbW3hMSvAlIaUUpRoFU0tAWgWR0BilWLk0aZQdX2UKGgGaAloD0MITweynlp7ZsCUhpRSlGgVTS0BaBZHQGLg3iJfpll1fZQoaAZoCWgPQwil2NE41B9CwJSGlFKUaBVNLQFoFkdAYuVRnezlcXV9lChoBmgJaA9DCDm4dMx5ZEzAlIaUUpRoFU0tAWgWR0Bi5pKnNxEOdX2UKGgGaAloD0MITrSrkPJ/UcCUhpRSlGgVTS0BaBZHQGL4PNNahYh1fZQoaAZoCWgPQwhgr7DgnrmEwJSGlFKUaBVLy2gWR0BjN0ZaV2RrdX2UKGgGaAloD0MILh7ec2AaZMCUhpRSlGgVTS0BaBZHQGNYtMPBi1B1fZQoaAZoCWgPQwiV0jO9xNwzQJSGlFKUaBVNLQFoFkdAY13l2eQMhHV9lChoBmgJaA9DCFT+tbxyAGrAlIaUUpRoFU0tAWgWR0BjcIGnn+yadX2UKGgGaAloD0MIN1X3yOZqGsCUhpRSlGgVTS0BaBZHQGOs3uE25x11fZQoaAZoCWgPQwh4mzdOCpdFwJSGlFKUaBVNLQFoFkdAY8iGJvYOD3V9lChoBmgJaA9DCPrTRnU6MmfAlIaUUpRoFU0tAWgWR0BjzlLQHAymdX2UKGgGaAloD0MIio9PyM63NsCUhpRSlGgVTS0BaBZHQGPdrGza9K51fZQoaAZoCWgPQwgea0YGuQMpwJSGlFKUaBVNLQFoFkdAZBHRWLgn+nV9lChoBmgJaA9DCIwxsI7jWmrAlIaUUpRoFU0tAWgWR0BkLxagVXV9dX2UKGgGaAloD0MIOs5twr2gS8CUhpRSlGgVTS0BaBZHQGQ0gpjMFEB1fZQoaAZoCWgPQwiQMXctIflNwJSGlFKUaBVNLQFoFkdAZEb3dsSCe3V9lChoBmgJaA9DCNXt7CuPeWfAlIaUUpRoFU0tAWgWR0BkfgToMa0hdX2UKGgGaAloD0MI0R+aeXKRMMCUhpRSlGgVTS0BaBZHQGV0dnCfpUx1fZQoaAZoCWgPQwiuoGmJldU4wJSGlFKUaBVNLQFoFkdAZXkfwI+nqHV9lChoBmgJaA9DCNRjWwackTTAlIaUUpRoFU0tAWgWR0BliC1LJ0W/dX2UKGgGaAloD0MI1c4wtaW+EsCUhpRSlGgVTS0BaBZHQGW6Q6hg3Lp1fZQoaAZoCWgPQwhwXpz4ak8jQJSGlFKUaBVNLQFoFkdAZdLWvr4WUXV9lChoBmgJaA9DCJ1lFqHYsEhAlIaUUpRoFU0tAWgWR0Bl2FnPE87qdX2UKGgGaAloD0MI26LMBpnNV0CUhpRSlGgVTS0BaBZHQGXn4Kpkwvh1fZQoaAZoCWgPQwhrRDAOLmVCQJSGlFKUaBVNLQFoFkdAZhhRSgoPTXV9lChoBmgJaA9DCC8wKxRpTIHAlIaUUpRoFUvgaBZHQGYfWU8mrsB1fZQoaAZoCWgPQwjTLTvEP9RBQJSGlFKUaBVNLQFoFkdAZjPollbu+nV9lChoBmgJaA9DCDFgyVUsRipAlIaUUpRoFU0tAWgWR0BmSQiTt9hJdX2UKGgGaAloD0MIkzZV94hWecCUhpRSlGgVS8FoFkdAZl+53kgfVHV9lChoBmgJaA9DCKZfIt46S0tAlIaUUpRoFU0tAWgWR0Bmc0b5uZTidX2UKGgGaAloD0MI65Cb4YafesCUhpRSlGgVS9toFkdAZn6o86mwaHV9lChoBmgJaA9DCP4sliL5lEZAlIaUUpRoFU0tAWgWR0BmgtAJLM9sdX2UKGgGaAloD0MIJqYLsdqlg8CUhpRSlGgVS4doFkdAZpoP7vXsgXV9lChoBmgJaA9DCFT+tbxyGmvAlIaUUpRoFU0tAWgWR0BmnO+IuXeFdX2UKGgGaAloD0MIZOlDF9TYU0CUhpRSlGgVTS0BaBZHQGatsqz7di51fZQoaAZoCWgPQwj6CPzh5/9jQJSGlFKUaBVNLQFoFkdAZsIUC7sfJXV9lChoBmgJaA9DCCIZcmw9t0LAlIaUUpRoFU0tAWgWR0Bm5dYMfA9FdX2UKGgGaAloD0MIEr9iDRcqaECUhpRSlGgVTS0BaBZHQGbrEtNBWxR1fZQoaAZoCWgPQwgqU8xB0DEwwJSGlFKUaBVNLQFoFkdAZwQZYxL0z3V9lChoBmgJaA9DCLmq7LsizoLAlIaUUpRoFUtraBZHQGcEVC5VfeF1fZQoaAZoCWgPQwgXvOgrSFs7QJSGlFKUaBVNLQFoFkdAZx64Cp3otHV9lChoBmgJaA9DCLTlXIqLCIDAlIaUUpRoFUu7aBZHQGciyMcZLqV1fZQoaAZoCWgPQwiwV1hwP+RDQJSGlFKUaBVNLQFoFkdAZ2KWdEsrd3V9lChoBmgJaA9DCDnx1Y7igEXAlIaUUpRoFU0tAWgWR0BnYvQKKHfudX2UKGgGaAloD0MIsaiI06ntg8CUhpRSlGgVS9toFkdAZ2h9ph4MW3V9lChoBmgJaA9DCL0ZNV+li2LAlIaUUpRoFU0tAWgWR0BnfTDdgv12dX2UKGgGaAloD0MIY15HHDKegMCUhpRSlGgVS/RoFkdAZ7iTlkpZwHVlLg=="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
BC-harcodemap-punish-stagnant-no-training/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 18973
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6dddd9fd7ebd47c598536fc972999bc20f9ba60f74d925d33344bc8b01172969
|
3 |
size 18973
|
BC-harcodemap-punish-stagnant-no-training/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 9295
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8647ab110de34d653130161da4c14c8c6c5eee2edeb816056577ad05551a688
|
3 |
size 9295
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: RoombaAToB-harcodemap-punish-stagnant-no-training
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: RoombaAToB-harcodemap-punish-stagnant-no-training
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 9.41 +/- 0.00
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f598f8f5240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f598f8f52d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f598f8f5360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f598f8f53f0>", "_build": "<function ActorCriticPolicy._build at 0x7f598f8f5480>", "forward": "<function ActorCriticPolicy.forward at 0x7f598f8f5510>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f598f8f55a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f598f8f5630>", "_predict": "<function ActorCriticPolicy._predict at 0x7f598f8f56c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f598f8f5750>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f598f8f57e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f598f8f5870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f598f8e2840>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 57344, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681939520438323783, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAK6120K6mEZAAADIQgAAyEIAAMhCAADIQgy8i0JH1J5CAADIQsIXmUKZLkpDxA1GvgAAyEKl2FZC7YOZQgAAyEIAAMhCFzqlQr8hu0IAAMhCGqwlQ63MEUAAAMhClomVQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQm4WGUNIew1AAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQqUgjUKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdsHgmnvAfMCUhpRSlIwBbJRLCowBdJRHQGcicAaNuLt1fZQoaAZoCWgPQwiqDrkZrrx8wJSGlFKUaBVLDWgWR0BnJNQGfPHDdX2UKGgGaAloD0MI5e5zfBTChMCUhpRSlGgVTS0BaBZHQGck1uBMBZJ1fZQoaAZoCWgPQwhglKC/YECRQJSGlFKUaBVLKWgWR0BnJzrE9+w1dX2UKGgGaAloD0MIkC42rVRffMCUhpRSlGgVSxBoFkdAZydpPAO8TXV9lChoBmgJaA9DCAnE6/oF+3vAlIaUUpRoFUsTaBZHQGcn41YQrc11fZQoaAZoCWgPQwj7zFmfcnJ8wJSGlFKUaBVLDWgWR0BnKj2lEZzgdX2UKGgGaAloD0MIUU60q3BQjMCUhpRSlGgVS5JoFkdAZyyJ53Tuv3V9lChoBmgJaA9DCNnonJ9is3zAlIaUUpRoFUsKaBZHQGcssYl6Z6V1fZQoaAZoCWgPQwhS76mctoR8wJSGlFKUaBVLC2gWR0BnLr2SMcZMdX2UKGgGaAloD0MI1gJ7TGSefMCUhpRSlGgVSw9oFkdAZzG0b961LXV9lChoBmgJaA9DCKKb/YFyiYbAlIaUUpRoFUtAaBZHQGc0kFnqVyF1fZQoaAZoCWgPQwiUhETaxsSEwJSGlFKUaBVLa2gWR0BnPK1og3cYdX2UKGgGaAloD0MIkuwRapZMkUCUhpRSlGgVSyJoFkdAZ0QXb/Ot4nV9lChoBmgJaA9DCASuK2YEp4nAlIaUUpRoFUtUaBZHQGdFkBbOeJ51fZQoaAZoCWgPQwheZW1TvIN7wJSGlFKUaBVLFmgWR0BnSWbwz+FUdX2UKGgGaAloD0MIvr1r0Ncmh8CUhpRSlGgVS0FoFkdAZ1DP+n62v3V9lChoBmgJaA9DCLIqwk1mwJHAlIaUUpRoFUvHaBZHQGdVzP8hs691fZQoaAZoCWgPQwhnfF9cqrF7wJSGlFKUaBVLFGgWR0BnVdDBuXNUdX2UKGgGaAloD0MICVBTy1ZgfMCUhpRSlGgVSw1oFkdAZ1ip4KQaJnV9lChoBmgJaA9DCHWQ14N5zJHAlIaUUpRoFUu6aBZHQGdYrofSx7l1fZQoaAZoCWgPQwhzaJHtPGF7wJSGlFKUaBVLFWgWR0BnW5H9WIXTdX2UKGgGaAloD0MIgo/BipOPi8CUhpRSlGgVS2loFkdAZ2JeQdS2pnV9lChoBmgJaA9DCG1Zvi4DNYfAlIaUUpRoFUtEaBZHQGdwLBsQ/X51fZQoaAZoCWgPQwgv+DQnL3GIwJSGlFKUaBVLWmgWR0Bnc0iMYMvzdX2UKGgGaAloD0MIFhObjyvNe8CUhpRSlGgVSxJoFkdAZ3QEwFkhBHV9lChoBmgJaA9DCC7JAbuaqnvAlIaUUpRoFUsSaBZHQGd4dNWU8mt1fZQoaAZoCWgPQwibdjHNNJSKwJSGlFKUaBVLfWgWR0BnhXkmx+rmdX2UKGgGaAloD0MIrgyqDQ6pfMCUhpRSlGgVSxFoFkdAZ4pTdcjZ+XV9lChoBmgJaA9DCD2dK0ppMITAlIaUUpRoFUtkaBZHQGeTAXuVopR1fZQoaAZoCWgPQwjQC3cujDyRQJSGlFKUaBVLImgWR0BnlPVqesgddX2UKGgGaAloD0MINEqX/uXDfMCUhpRSlGgVSwloFkdAZ5hQD3dsSHV9lChoBmgJaA9DCIzWUdWkh47AlIaUUpRoFUuYaBZHQGegQh4dIXl1fZQoaAZoCWgPQwiPN/ktWjKFwJSGlFKUaBVNLQFoFkdAZ7dmAbyYonV9lChoBmgJaA9DCABYHTnSvHzAlIaUUpRoFUsJaBZHQGe6x/3Fkx11fZQoaAZoCWgPQwhJ88e0Vj+EwJSGlFKUaBVLXWgWR0BnvWgg5imVdX2UKGgGaAloD0MI7DTSUrmrfMCUhpRSlGgVSxJoFkdAZ8HIvrWy1XV9lChoBmgJaA9DCBHDDmMS+IrAlIaUUpRoFUtcaBZHQGfFxHG0eEJ1fZQoaAZoCWgPQwiP5PIfEk98wJSGlFKUaBVLDmgWR0BnxwCp3os7dX2UKGgGaAloD0MImPc402T+h8CUhpRSlGgVS0poFkdAZ9iNxVAAyXV9lChoBmgJaA9DCMeEmEu6J5DAlIaUUpRoFUu5aBZHQGfaAHE/B311fZQoaAZoCWgPQwidDmQ9NQR8wJSGlFKUaBVLE2gWR0Bn39LSNOuadX2UKGgGaAloD0MI1VktsMeyiMCUhpRSlGgVS1RoFkdAZ+UwD/2kBXV9lChoBmgJaA9DCN/foL26KIjAlIaUUpRoFUtQaBZHQGflUvXbudB1fZQoaAZoCWgPQwgl5llJ65V8wJSGlFKUaBVLD2gWR0Bn5bfBN21VdX2UKGgGaAloD0MI+N9Kdmx9fMCUhpRSlGgVSwxoFkdAZ+mih37k4nV9lChoBmgJaA9DCDHrxVDOsHzAlIaUUpRoFUsNaBZHQGfqIrvsqrl1fZQoaAZoCWgPQwjisZ/FUrGHwJSGlFKUaBVLOGgWR0Bn7v2ys0YTdX2UKGgGaAloD0MIr7Mh/wzZh8CUhpRSlGgVS1VoFkdAaAnS6UaAF3V9lChoBmgJaA9DCHCWkuWkQ3zAlIaUUpRoFUsPaBZHQGgPOZb6guh1fZQoaAZoCWgPQwioqzsW+8CEwJSGlFKUaBVLZmgWR0BoFkRxtHhCdX2UKGgGaAloD0MIb4Pab40BjsCUhpRSlGgVS4xoFkdAaBtfzjFQ23V9lChoBmgJaA9DCGKjrN+MUI/AlIaUUpRoFUu3aBZHQGgwR8D0UXZ1fZQoaAZoCWgPQwiH3XcMr9+JwJSGlFKUaBVLZmgWR0BoNokVvddndX2UKGgGaAloD0MIdSDrqVXGfMCUhpRSlGgVSwloFkdAaDptpmEoOXV9lChoBmgJaA9DCGnIeJSK/onAlIaUUpRoFUtTaBZHQGg61uJk5IZ1fZQoaAZoCWgPQwg0oUli6fKEwJSGlFKUaBVLYGgWR0BoOxzFMqSYdX2UKGgGaAloD0MIwXCuYcamfMCUhpRSlGgVSwtoFkdAaD2NZvDP4XV9lChoBmgJaA9DCFEVU+knxnzAlIaUUpRoFUsJaBZHQGhBSsjmjj91fZQoaAZoCWgPQwjMtWgB2lV7wJSGlFKUaBVLEmgWR0BoQWFlCkXUdX2UKGgGaAloD0MIkrOwp11EfMCUhpRSlGgVSw1oFkdAaEUFHJ9y93V9lChoBmgJaA9DCA/QfTnzzXvAlIaUUpRoFUsTaBZHQGhHsDfWMCN1fZQoaAZoCWgPQwhXXvI/OVN8wJSGlFKUaBVLEWgWR0BoSsdV/+bWdX2UKGgGaAloD0MILxUb8/qoe8CUhpRSlGgVSxFoFkdAaEzKkl/pdXV9lChoBmgJaA9DCFG7XwXY0ojAlIaUUpRoFUtTaBZHQGhM6AWi1zB1fZQoaAZoCWgPQwgdAkcCzc58wJSGlFKUaBVLDGgWR0BoUeViWmgrdX2UKGgGaAloD0MIC2MLQc4qfMCUhpRSlGgVSw5oFkdAaFKfJ3gUDnV9lChoBmgJaA9DCDtvY7OjM3zAlIaUUpRoFUsaaBZHQGhbcm0E5hl1fZQoaAZoCWgPQwiUF5mAfz6LwJSGlFKUaBVLaGgWR0BoX5zBAOawdX2UKGgGaAloD0MI6udNRapze8CUhpRSlGgVSxRoFkdAaGNouf29MHV9lChoBmgJaA9DCIlhhzEpzHvAlIaUUpRoFUsPaBZHQGhl4EfT1Ch1fZQoaAZoCWgPQwiVYkfj8AaIwJSGlFKUaBVLSmgWR0BoZsj3VTaTdX2UKGgGaAloD0MIhGdCkxQhkUCUhpRSlGgVSxtoFkdAaHJvx6OYIHV9lChoBmgJaA9DCPW8GwuKIYvAlIaUUpRoFUtaaBZHQGh2kl3Qla91fZQoaAZoCWgPQwghj+BGSlR8wJSGlFKUaBVLD2gWR0BoeVKsdT5wdX2UKGgGaAloD0MIthSQ9v+he8CUhpRSlGgVSxFoFkdAaH/g1m8M/nV9lChoBmgJaA9DCMy3Pqz3JonAlIaUUpRoFUtNaBZHQGiGJSR8twt1fZQoaAZoCWgPQwikGYumsz58wJSGlFKUaBVLD2gWR0BohmfXf642dX2UKGgGaAloD0MIADyiQrUFfMCUhpRSlGgVSxNoFkdAaI4h0Qsf73V9lChoBmgJaA9DCOvE5XjF/IjAlIaUUpRoFUtWaBZHQGibpj2Bas91fZQoaAZoCWgPQwgLz0vFRkp7wJSGlFKUaBVLEmgWR0BoobtXxOLzdX2UKGgGaAloD0MIiGNd3AbTh8CUhpRSlGgVS01oFkdAaKXoIv8IiXV9lChoBmgJaA9DCOXyH9Kv9nvAlIaUUpRoFUsSaBZHQGipOp84Pwx1fZQoaAZoCWgPQwioABjPABaJwJSGlFKUaBVLgWgWR0BowFR51Ng0dX2UKGgGaAloD0MIfA+XHBc/h8CUhpRSlGgVS0JoFkdAaMH9/BnBcnV9lChoBmgJaA9DCEurIXEPsYnAlIaUUpRoFUtdaBZHQGjKZQYUFjd1fZQoaAZoCWgPQwjYuWkzTnuFwJSGlFKUaBVNLQFoFkdAaN0biIcin3V9lChoBmgJaA9DCJqWWBlNuHzAlIaUUpRoFUsKaBZHQGjfVo6CDmN1fZQoaAZoCWgPQwiwrDQpBVGKwJSGlFKUaBVLYmgWR0Bo5j63y7PIdX2UKGgGaAloD0MIfzLGh1m1iMCUhpRSlGgVS1JoFkdAaOb0+1SflXV9lChoBmgJaA9DCM2QKopX3XzAlIaUUpRoFUsMaBZHQGjpNoBaLXN1fZQoaAZoCWgPQwjM0k7NZYGJwJSGlFKUaBVLhWgWR0Bo7eNipeeGdX2UKGgGaAloD0MICcIVUChqe8CUhpRSlGgVSxRoFkdAaPOOiFj/dnV9lChoBmgJaA9DCLSwpx3+B4jAlIaUUpRoFUtPaBZHQGj1N8E3bVV1fZQoaAZoCWgPQwgYzF8hE1+JwJSGlFKUaBVLVmgWR0Bo/HBk7OmjdX2UKGgGaAloD0MIPX5v09+cicCUhpRSlGgVS1FoFkdAaP0USIxgzHV9lChoBmgJaA9DCE+w/zp3ZH3AlIaUUpRoFUspaBZHQGj9RpUPxx11fZQoaAZoCWgPQwi4Wicux718wJSGlFKUaBVLEGgWR0Bo/2smv4dqdX2UKGgGaAloD0MIA15m2GjDfMCUhpRSlGgVSwxoFkdAaP9yWiUPhHV9lChoBmgJaA9DCOD2BIkdNZFAlIaUUpRoFUsdaBZHQGkDH8CPp6h1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 70, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbb916e91b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbb916e9240>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbb916e92d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbb916e9360>", "_build": "<function ActorCriticPolicy._build at 0x7fbb916e93f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbb916e9480>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbb916e9510>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbb916e95a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbb916e9630>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbb916e96c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbb916e9750>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbb916e97e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbb916d5fc0>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 57344, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681939872464391267, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAACNdiUJJS56/AADIQqrG7EHTBPpBXgxNQgAAyEIAAMhCAADIQgAAyEKRIfRCIIL6vhFkuEJy+3xCAADIQprsJEKa7CRCFmhXQgAAyEIAAMhCDiSUQiqU+b/vVzFCggK6QgAAyEKCWkJCAADIQgAAyEIAAMhCAADIQoLYAENDyQ1AAADIQgAAyEIAAMhCAADIQgAAyEIoUJpCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXfqXpDJFT0CUhpRSlIwBbJRNLQGMAXSUR0BZBnEqDsdDdX2UKGgGaAloD0MI0clS6/0G+7+UhpRSlGgVTS0BaBZHQFl67CBPKuB1fZQoaAZoCWgPQwg6CDpa1YIQwJSGlFKUaBVNLQFoFkdAWYIpsoDxLHV9lChoBmgJaA9DCPYlGw+2UkxAlIaUUpRoFU0tAWgWR0BZhquKXOW0dX2UKGgGaAloD0MI/kRlw5rwS0CUhpRSlGgVTS0BaBZHQFnpRQJokAx1fZQoaAZoCWgPQwinBprPOYiCwJSGlFKUaBVNAAFoFkdAWju0jTrmhnV9lChoBmgJaA9DCBk8TPvm1jJAlIaUUpRoFU0tAWgWR0BaZayfL9uQdX2UKGgGaAloD0MIvf4kPnfIS0CUhpRSlGgVTS0BaBZHQFppqdYnv2J1fZQoaAZoCWgPQwikchO1NKZQQJSGlFKUaBVNLQFoFkdAWsRD5TIeYHV9lChoBmgJaA9DCNZuu9BcYzBAlIaUUpRoFU0tAWgWR0Ba9mVVxS5zdX2UKGgGaAloD0MIOPdXj/u+RUCUhpRSlGgVTS0BaBZHQFsOnuiN83N1fZQoaAZoCWgPQwjle0YiNA5BQJSGlFKUaBVNLQFoFkdAWxFYNiH6/XV9lChoBmgJaA9DCM44DVGFXlNAlIaUUpRoFU0tAWgWR0BbTovexfOVdX2UKGgGaAloD0MIqAAYz6Chx7+UhpRSlGgVTS0BaBZHQF1ys90Rvm51fZQoaAZoCWgPQwhEotCy7tdHQJSGlFKUaBVNLQFoFkdAXZwxrSE123V9lChoBmgJaA9DCAdeLXdm6ktAlIaUUpRoFU0tAWgWR0BdoIRNATqTdX2UKGgGaAloD0MIRWeZRSgaMsCUhpRSlGgVTS0BaBZHQF4P4m1IAfd1fZQoaAZoCWgPQwgaGeQugq6AwJSGlFKUaBVNBAFoFkdAXj/R2KVIJHV9lChoBmgJaA9DCANC6+HLpB/AlIaUUpRoFU0tAWgWR0Beb7KRuCPIdX2UKGgGaAloD0MIPKWD9X9KRcCUhpRSlGgVTS0BaBZHQF5xO8TSLIh1fZQoaAZoCWgPQwijrrX3KaCAwJSGlFKUaBVL/GgWR0Bel2eYlY2bdX2UKGgGaAloD0MIrFW7JmRSf8CUhpRSlGgVTQkBaBZHQF6zEDhcZ+B1fZQoaAZoCWgPQwhVMCqpE+AdwJSGlFKUaBVNLQFoFkdAXuU+otL+P3V9lChoBmgJaA9DCIGWrmAbllLAlIaUUpRoFU0tAWgWR0Be6Ii9qUNbdX2UKGgGaAloD0MIpRZKJqdaQkCUhpRSlGgVTS0BaBZHQF8Rn6Eal1t1fZQoaAZoCWgPQwjqlbIMcZwfwJSGlFKUaBVNLQFoFkdAXzU+aBqbjXV9lChoBmgJaA9DCHjt0obDmiJAlIaUUpRoFU0tAWgWR0BfhtsabWmQdX2UKGgGaAloD0MIMbWlDvKKRsCUhpRSlGgVTS0BaBZHQF+KhKlHjId1fZQoaAZoCWgPQwgDQYAMHRlDwJSGlFKUaBVNLQFoFkdAX8U/Vy3kP3V9lChoBmgJaA9DCKSrdHd9QIHAlIaUUpRoFU0cAWgWR0Bf7XRPXTVldX2UKGgGaAloD0MIfuGVJE/7fsCUhpRSlGgVS7toFkdAYAC5U96kZnV9lChoBmgJaA9DCNmWAWcpyUdAlIaUUpRoFU0tAWgWR0BgJPPC2tuDdX2UKGgGaAloD0MIBDxp4bJ6KcCUhpRSlGgVTS0BaBZHQGBFIy9EkSp1fZQoaAZoCWgPQwiocASpFJsnwJSGlFKUaBVNLQFoFkdAYFanQY1pCnV9lChoBmgJaA9DCJ1KBoBq6H/AlIaUUpRoFU0cAWgWR0BgXJhttQ9BdX2UKGgGaAloD0MIs0KR7ueaUECUhpRSlGgVTS0BaBZHQGCP4SYgJTl1fZQoaAZoCWgPQwgIVWr2QFshwJSGlFKUaBVNLQFoFkdAYK7DG96C2HV9lChoBmgJaA9DCLOVl/xPGkVAlIaUUpRoFU0tAWgWR0BgviWE9MbndX2UKGgGaAloD0MIOpLLf0hnK8CUhpRSlGgVTS0BaBZHQGDESk0rK/51fZQoaAZoCWgPQwj2X+emrd2AwJSGlFKUaBVLxWgWR0Bg6voRqXWwdX2UKGgGaAloD0MIaqUQyCUeIcCUhpRSlGgVTS0BaBZHQGDuNN8E3bV1fZQoaAZoCWgPQwg6lQwAVUQgQJSGlFKUaBVNLQFoFkdAYckYG+sYEXV9lChoBmgJaA9DCMF0WrcBk4PAlIaUUpRoFUuiaBZHQGHOGrsByS51fZQoaAZoCWgPQwjEPgEUIw8xwJSGlFKUaBVNLQFoFkdAYc8L5RCQcXV9lChoBmgJaA9DCK2HLxN14ZNAlIaUUpRoFUvcaBZHQGHeFXJYDDF1fZQoaAZoCWgPQwi0O6QYoKFjwJSGlFKUaBVNLQFoFkdAYiC1OTJQtXV9lChoBmgJaA9DCNbHQ99dOmDAlIaUUpRoFU0tAWgWR0BiJUep4rz5dX2UKGgGaAloD0MIejarPlcLWcCUhpRSlGgVTS0BaBZHQGImU5U96kZ1fZQoaAZoCWgPQwiifhe2ZhlGwJSGlFKUaBVNLQFoFkdAYjf3t8eCCnV9lChoBmgJaA9DCDiGAODYV0/AlIaUUpRoFU0tAWgWR0Bif6VGCqZMdX2UKGgGaAloD0MI1GNbBlxgdUCUhpRSlGgVTS0BaBZHQGKExQzk6tF1fZQoaAZoCWgPQwjLnC6LiRxvwJSGlFKUaBVNLQFoFkdAYoXRQ79ycXV9lChoBmgJaA9DCKTBbW3hMSvAlIaUUpRoFU0tAWgWR0BilWLk0aZQdX2UKGgGaAloD0MITweynlp7ZsCUhpRSlGgVTS0BaBZHQGLg3iJfpll1fZQoaAZoCWgPQwil2NE41B9CwJSGlFKUaBVNLQFoFkdAYuVRnezlcXV9lChoBmgJaA9DCDm4dMx5ZEzAlIaUUpRoFU0tAWgWR0Bi5pKnNxEOdX2UKGgGaAloD0MITrSrkPJ/UcCUhpRSlGgVTS0BaBZHQGL4PNNahYh1fZQoaAZoCWgPQwhgr7DgnrmEwJSGlFKUaBVLy2gWR0BjN0ZaV2RrdX2UKGgGaAloD0MILh7ec2AaZMCUhpRSlGgVTS0BaBZHQGNYtMPBi1B1fZQoaAZoCWgPQwiV0jO9xNwzQJSGlFKUaBVNLQFoFkdAY13l2eQMhHV9lChoBmgJaA9DCFT+tbxyAGrAlIaUUpRoFU0tAWgWR0BjcIGnn+yadX2UKGgGaAloD0MIN1X3yOZqGsCUhpRSlGgVTS0BaBZHQGOs3uE25x11fZQoaAZoCWgPQwh4mzdOCpdFwJSGlFKUaBVNLQFoFkdAY8iGJvYOD3V9lChoBmgJaA9DCPrTRnU6MmfAlIaUUpRoFU0tAWgWR0BjzlLQHAymdX2UKGgGaAloD0MIio9PyM63NsCUhpRSlGgVTS0BaBZHQGPdrGza9K51fZQoaAZoCWgPQwgea0YGuQMpwJSGlFKUaBVNLQFoFkdAZBHRWLgn+nV9lChoBmgJaA9DCIwxsI7jWmrAlIaUUpRoFU0tAWgWR0BkLxagVXV9dX2UKGgGaAloD0MIOs5twr2gS8CUhpRSlGgVTS0BaBZHQGQ0gpjMFEB1fZQoaAZoCWgPQwiQMXctIflNwJSGlFKUaBVNLQFoFkdAZEb3dsSCe3V9lChoBmgJaA9DCNXt7CuPeWfAlIaUUpRoFU0tAWgWR0BkfgToMa0hdX2UKGgGaAloD0MI0R+aeXKRMMCUhpRSlGgVTS0BaBZHQGV0dnCfpUx1fZQoaAZoCWgPQwiuoGmJldU4wJSGlFKUaBVNLQFoFkdAZXkfwI+nqHV9lChoBmgJaA9DCNRjWwackTTAlIaUUpRoFU0tAWgWR0BliC1LJ0W/dX2UKGgGaAloD0MI1c4wtaW+EsCUhpRSlGgVTS0BaBZHQGW6Q6hg3Lp1fZQoaAZoCWgPQwhwXpz4ak8jQJSGlFKUaBVNLQFoFkdAZdLWvr4WUXV9lChoBmgJaA9DCJ1lFqHYsEhAlIaUUpRoFU0tAWgWR0Bl2FnPE87qdX2UKGgGaAloD0MI26LMBpnNV0CUhpRSlGgVTS0BaBZHQGXn4Kpkwvh1fZQoaAZoCWgPQwhrRDAOLmVCQJSGlFKUaBVNLQFoFkdAZhhRSgoPTXV9lChoBmgJaA9DCC8wKxRpTIHAlIaUUpRoFUvgaBZHQGYfWU8mrsB1fZQoaAZoCWgPQwjTLTvEP9RBQJSGlFKUaBVNLQFoFkdAZjPollbu+nV9lChoBmgJaA9DCDFgyVUsRipAlIaUUpRoFU0tAWgWR0BmSQiTt9hJdX2UKGgGaAloD0MIkzZV94hWecCUhpRSlGgVS8FoFkdAZl+53kgfVHV9lChoBmgJaA9DCKZfIt46S0tAlIaUUpRoFU0tAWgWR0Bmc0b5uZTidX2UKGgGaAloD0MI65Cb4YafesCUhpRSlGgVS9toFkdAZn6o86mwaHV9lChoBmgJaA9DCP4sliL5lEZAlIaUUpRoFU0tAWgWR0BmgtAJLM9sdX2UKGgGaAloD0MIJqYLsdqlg8CUhpRSlGgVS4doFkdAZpoP7vXsgXV9lChoBmgJaA9DCFT+tbxyGmvAlIaUUpRoFU0tAWgWR0BmnO+IuXeFdX2UKGgGaAloD0MIZOlDF9TYU0CUhpRSlGgVTS0BaBZHQGatsqz7di51fZQoaAZoCWgPQwj6CPzh5/9jQJSGlFKUaBVNLQFoFkdAZsIUC7sfJXV9lChoBmgJaA9DCCIZcmw9t0LAlIaUUpRoFU0tAWgWR0Bm5dYMfA9FdX2UKGgGaAloD0MIEr9iDRcqaECUhpRSlGgVTS0BaBZHQGbrEtNBWxR1fZQoaAZoCWgPQwgqU8xB0DEwwJSGlFKUaBVNLQFoFkdAZwQZYxL0z3V9lChoBmgJaA9DCLmq7LsizoLAlIaUUpRoFUtraBZHQGcEVC5VfeF1fZQoaAZoCWgPQwgXvOgrSFs7QJSGlFKUaBVNLQFoFkdAZx64Cp3otHV9lChoBmgJaA9DCLTlXIqLCIDAlIaUUpRoFUu7aBZHQGciyMcZLqV1fZQoaAZoCWgPQwiwV1hwP+RDQJSGlFKUaBVNLQFoFkdAZ2KWdEsrd3V9lChoBmgJaA9DCDnx1Y7igEXAlIaUUpRoFU0tAWgWR0BnYvQKKHfudX2UKGgGaAloD0MIsaiI06ntg8CUhpRSlGgVS9toFkdAZ2h9ph4MW3V9lChoBmgJaA9DCL0ZNV+li2LAlIaUUpRoFU0tAWgWR0BnfTDdgv12dX2UKGgGaAloD0MIY15HHDKegMCUhpRSlGgVS/RoFkdAZ7iTlkpZwHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 70, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e4c888d9f40740f639bddbd191c5d592b665f5bdc76fffc1297edbc266b78a0
|
3 |
+
size 597788
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 9.413632631031174, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T14:34:38.767199"}
|