Upload model to Hugging Face
Browse files- BC-harcodemap-punish-stagnant-no-training.zip +2 -2
- BC-harcodemap-punish-stagnant-no-training/data +16 -16
- BC-harcodemap-punish-stagnant-no-training/policy.optimizer.pth +1 -1
- BC-harcodemap-punish-stagnant-no-training/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
BC-harcodemap-punish-stagnant-no-training.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84ca87514ae501291b72305e65a55dd6634497bae6e8230d08161fa463742f50
|
3 |
+
size 44024
|
BC-harcodemap-punish-stagnant-no-training/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
@@ -48,7 +48,7 @@
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -70,7 +70,7 @@
|
|
70 |
"_current_progress_remaining": -0.2287999999999999,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f36f68e52d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f36f68e5360>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f36f68e53f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f36f68e5480>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f36f68e5510>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f36f68e55a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f36f68e5630>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f36f68e56c0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f36f68e5750>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f36f68e57e0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f36f68e5870>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f36f68e5900>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f36f68d23c0>"
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1681940879795278580,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAANZ6rELTgiU/AADIQgAAyEIxQZhC3imjQgAAyEL0e69CbxKPQgAAyELf5OJCkscNPwAAyEIAAMhCU/4jQt9gNkKqFX5CAADIQgAAyEKfzn1C+wjkQiA6KT8AAMhCAABIQgAAIEIAAEhCAACMQgAAyEIAAMhC8zxpQiz0i0IZiwNAAADIQgAAyEIs6JlCAADIQgAAyEIAAMhCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
70 |
"_current_progress_remaining": -0.2287999999999999,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVJRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINzemJ+zndsCUhpRSlIwBbJRLf4wBdJRHQEqO/PgNwzd1fZQoaAZoCWgPQwgQzxJkhLmIwJSGlFKUaBVLqmgWR0BKn1yWAwwkdX2UKGgGaAloD0MI6Q33kbt2gMCUhpRSlGgVS3RoFkdASqGWpqASWnV9lChoBmgJaA9DCOiiIeNRsYfAlIaUUpRoFUu3aBZHQEqlV4oqkM11fZQoaAZoCWgPQwgOETen0th8wJSGlFKUaBVLNWgWR0BK2j8cdYGMdX2UKGgGaAloD0MI4nZoWAzifcCUhpRSlGgVSzloFkdASu8rmQr+YXV9lChoBmgJaA9DCL+er1luR4HAlIaUUpRoFUtDaBZHQEsERKYiPhh1fZQoaAZoCWgPQwgmcOtuPlSBwJSGlFKUaBVLTmgWR0BLDIHTqjagdX2UKGgGaAloD0MIO29jszMmlUCUhpRSlGgVSyRoFkdASyvFYMfA9HV9lChoBmgJaA9DCGYTYFh+E4DAlIaUUpRoFUs3aBZHQEss24uscQ11fZQoaAZoCWgPQwj+mNamcUp7wJSGlFKUaBVLNGgWR0BLWwcxTKkmdX2UKGgGaAloD0MIQbgCCvV4esCUhpRSlGgVSzloFkdAS1t4C6pYLnV9lChoBmgJaA9DCEoKLIDp2ZRAlIaUUpRoFUslaBZHQEtfbW3BpHt1fZQoaAZoCWgPQwgIsMiv30eVQJSGlFKUaBVLIWgWR0BLgK7iADq4dX2UKGgGaAloD0MIbjMV4tHaf8CUhpRSlGgVS05oFkdAS4za/RE4N3V9lChoBmgJaA9DCC16pwJuInzAlIaUUpRoFUs6aBZHQEujRMvh60J1fZQoaAZoCWgPQwgxzt+EApiCwJSGlFKUaBVLOmgWR0BLz5YxL0z1dX2UKGgGaAloD0MIjpCBPLteesCUhpRSlGgVSzFoFkdAS9E163RXwXV9lChoBmgJaA9DCDkOvFpOyZRAlIaUUpRoFUsjaBZHQEvXQa72+PB1fZQoaAZoCWgPQwghPrDj/7p4wJSGlFKUaBVLcWgWR0BL73NcGC7LdX2UKGgGaAloD0MIsMka9UCTlUCUhpRSlGgVSyFoFkdATAJUDMeOn3V9lChoBmgJaA9DCCNMUS7t54HAlIaUUpRoFUs6aBZHQEwoMvRJEpl1fZQoaAZoCWgPQwhdNjrnp7F6wJSGlFKUaBVLNGgWR0BMRTxXnyNGdX2UKGgGaAloD0MIIhgHl45OfsCUhpRSlGgVS0FoFkdATGi3I+4b0nV9lChoBmgJaA9DCORJ0jUTJYDAlIaUUpRoFUt9aBZHQEyde0G/vfF1fZQoaAZoCWgPQwh8tDhjiL+VQJSGlFKUaBVLIGgWR0BMnwfZElVtdX2UKGgGaAloD0MI98snKyYJgMCUhpRSlGgVS2xoFkdATNsehf0Eo3V9lChoBmgJaA9DCEaVYdyNanjAlIaUUpRoFUuCaBZHQE0bH6Mzdk91fZQoaAZoCWgPQwgMAiuHlol6wJSGlFKUaBVLL2gWR0BNK1hTfixWdX2UKGgGaAloD0MIwHlx4uuWeMCUhpRSlGgVSz1oFkdAUNEvBacI7nV9lChoBmgJaA9DCPhUTnvqqIDAlIaUUpRoFUvBaBZHQFDpunMt9QZ1fZQoaAZoCWgPQwge+u5WVrd8wJSGlFKUaBVLNGgWR0BQ6q3uuzQedX2UKGgGaAloD0MIP47myEqmdMCUhpRSlGgVS31oFkdAUOvMKTjebnV9lChoBmgJaA9DCHKJIw8ERXPAlIaUUpRoFUtCaBZHQFEN6KtPpIN1fZQoaAZoCWgPQwhrD3uhAE5gQJSGlFKUaBVNLQFoFkdAUR8m4RVZLnV9lChoBmgJaA9DCDffiO5ZuHbAlIaUUpRoFUs9aBZHQFEqZUT+NtJ1fZQoaAZoCWgPQwhbXyS0ZdF9wJSGlFKUaBVLpWgWR0BRQIBV+7UYdX2UKGgGaAloD0MIuYrFb0qnesCUhpRSlGgVSzRoFkdAUUTT2FnIyXV9lChoBmgJaA9DCK0Tl+PVk3/AlIaUUpRoFUt/aBZHQFFkwpvxYq51fZQoaAZoCWgPQwhuwVJdgMR6wJSGlFKUaBVLO2gWR0BRaqkAPuohdX2UKGgGaAloD0MIdeRIZ+CdfsCUhpRSlGgVS09oFkdAUXF31SOzY3V9lChoBmgJaA9DCJCEfTtptoLAlIaUUpRoFU0BAWgWR0BRdcJD3M6jdX2UKGgGaAloD0MIWwndJXEIdsCUhpRSlGgVS0poFkdAUZczAN5MUXV9lChoBmgJaA9DCGWp9X7jw3rAlIaUUpRoFUs4aBZHQFGZ3w1BMSN1fZQoaAZoCWgPQwihL739uUtzwJSGlFKUaBVLUGgWR0BRpXN9ph4MdX2UKGgGaAloD0MIhxdEpGa7f8CUhpRSlGgVS4NoFkdAUcX2pQ1rI3V9lChoBmgJaA9DCGhdo+UAXnvAlIaUUpRoFUtIaBZHQFHL8yeqaPV1fZQoaAZoCWgPQwgO8+UF2BZ9wJSGlFKUaBVLPGgWR0BR06jzqbBodX2UKGgGaAloD0MIyqSGNkAFecCUhpRSlGgVS4VoFkdAUgAhgVoHs3V9lChoBmgJaA9DCFDj3vym2IDAlIaUUpRoFUtFaBZHQFIKiSq2jO91fZQoaAZoCWgPQwgvih742P54wJSGlFKUaBVLc2gWR0BSJWfbsWwedX2UKGgGaAloD0MIfLq6Y3E9f8CUhpRSlGgVSzloFkdAUlbGza9K3HV9lChoBmgJaA9DCAGmDBwQJoHAlIaUUpRoFUtqaBZHQFJg2KVII4V1fZQoaAZoCWgPQwheLuI7USWEwJSGlFKUaBVLmWgWR0BSmIsiB5HFdX2UKGgGaAloD0MIwk6xapAfecCUhpRSlGgVTQsBaBZHQFK4Jxeb/fh1fZQoaAZoCWgPQwi9xi5Rfah3wJSGlFKUaBVLg2gWR0BS0HyVfNRndX2UKGgGaAloD0MIdeRIZ6ADdsCUhpRSlGgVS0doFkdAUtfJ5mh/RXV9lChoBmgJaA9DCNQs0O6Q+3fAlIaUUpRoFUuMaBZHQFLf42S+xnp1fZQoaAZoCWgPQwjovpzZ7tpxwJSGlFKUaBVLTmgWR0BTH/0yxiXqdX2UKGgGaAloD0MIrS8S2vJodMCUhpRSlGgVS0ZoFkdAUyE6vJRwZXV9lChoBmgJaA9DCCuFQC7x5H/AlIaUUpRoFUt1aBZHQFM8Gn4wh4d1fZQoaAZoCWgPQwiCcXDp2Kl6wJSGlFKUaBVLoWgWR0BTSMB2fTTfdX2UKGgGaAloD0MIZRniWJeadMCUhpRSlGgVS1NoFkdAU4QQz1schnV9lChoBmgJaA9DCHXniefsMILAlIaUUpRoFUt8aBZHQFOOod+5OJt1fZQoaAZoCWgPQwhwW1t43lV7wJSGlFKUaBVLM2gWR0BTuqHbh3qzdX2UKGgGaAloD0MI+b64VGXKfcCUhpRSlGgVS9BoFkdAU9cEZBLPEHV9lChoBmgJaA9DCKRS7GjcY3XAlIaUUpRoFUtCaBZHQFPu7CiyprF1fZQoaAZoCWgPQwiP44dKo4B1wJSGlFKUaBVLwmgWR0BT72ZZ0SyudX2UKGgGaAloD0MIP5C8c8hAgMCUhpRSlGgVSy1oFkdAVAuscQyylnV9lChoBmgJaA9DCACo4sYteHvAlIaUUpRoFUs5aBZHQFQSrilzltF1fZQoaAZoCWgPQwjN5JttbpV4wJSGlFKUaBVL5WgWR0BULW5paibldX2UKGgGaAloD0MIzy10JQJcdcCUhpRSlGgVS1doFkdAVDwuZkTYd3V9lChoBmgJaA9DCNBCAkaX+HbAlIaUUpRoFUt3aBZHQFRPvjwQUYd1fZQoaAZoCWgPQwjf3jXoyz97wJSGlFKUaBVLPGgWR0BUVmLtNSIhdX2UKGgGaAloD0MINnaJ6u1Oe8CUhpRSlGgVSzdoFkdAVGXOGCZnc3V9lChoBmgJaA9DCAFNhA0PF4DAlIaUUpRoFU0bAWgWR0BUb3O4XoC/dX2UKGgGaAloD0MImx9/adHlfsCUhpRSlGgVSzNoFkdAVHz1dxAB1nV9lChoBmgJaA9DCOHRxhFr9XjAlIaUUpRoFUt9aBZHQFSOyd4FA3V1fZQoaAZoCWgPQwj6Yu/FVwZ1wJSGlFKUaBVLRmgWR0BUkOeSSvC/dX2UKGgGaAloD0MIuoJtxFPAesCUhpRSlGgVSzZoFkdAVJXyauwHJXV9lChoBmgJaA9DCK9gG/GkXHrAlIaUUpRoFUsxaBZHQFShWluWKMx1fZQoaAZoCWgPQwgW/DbEeKp+wJSGlFKUaBVLQmgWR0BUq996Tnq3dX2UKGgGaAloD0MIlUbM7PPQL0CUhpRSlGgVTS0BaBZHQFSzPS2H+Id1fZQoaAZoCWgPQwh+xK9Yox6AwJSGlFKUaBVLQ2gWR0BUzJS3solVdX2UKGgGaAloD0MIox6i0R2qf8CUhpRSlGgVS7VoFkdAVQOa6STyKHV9lChoBmgJaA9DCHTOT3Ecg3jAlIaUUpRoFUuCaBZHQFUXFeOXE611fZQoaAZoCWgPQwgVV5V9V6Q1QJSGlFKUaBVNLQFoFkdAVUIqgAZKnXV9lChoBmgJaA9DCIlA9Q9ihXnAlIaUUpRoFU0BAWgWR0BVUZBHCoCNdX2UKGgGaAloD0MIwHXFjDD6f8CUhpRSlGgVS05oFkdAVVLabnX/YXV9lChoBmgJaA9DCKX4+IRsvH/AlIaUUpRoFUs4aBZHQFVp5ftx+8Z1fZQoaAZoCWgPQwhFm+PcpjiUQJSGlFKUaBVLYmgWR0BVpUOZssQNdX2UKGgGaAloD0MIvY44ZCP/gMCUhpRSlGgVS3NoFkdAVbEjv/io9HV9lChoBmgJaA9DCJZfBmPELnnAlIaUUpRoFUt5aBZHQFXUbrTpgTh1fZQoaAZoCWgPQwizI9V3/oOBwJSGlFKUaBVNHwFoFkdAVeaujh1klXV9lChoBmgJaA9DCHTudr20o3/AlIaUUpRoFUtMaBZHQFXpxDLKV6h1fZQoaAZoCWgPQwjXbVD7rd16wJSGlFKUaBVLN2gWR0BWA6Qmu1WsdX2UKGgGaAloD0MIcceb/JaSfcCUhpRSlGgVS6FoFkdAVj7Jr+Hae3V9lChoBmgJaA9DCCr9hLPb/3bAlIaUUpRoFUtHaBZHQFZDUn5SFXd1fZQoaAZoCWgPQwjBOLh0jCB5wJSGlFKUaBVLgGgWR0BWWPX9R77bdX2UKGgGaAloD0MIq3gj80jjdsCUhpRSlGgVS4NoFkdAVlm9FnZkCnVlLg=="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
BC-harcodemap-punish-stagnant-no-training/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 18973
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ffb24e740554e73ba075fa1759f39b8e97452656b94d3918bab57350aa942f5
|
3 |
size 18973
|
BC-harcodemap-punish-stagnant-no-training/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 9295
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0765139e8e53a391a19c11a313f9e182210c74fc3e014db831441e547db77c09
|
3 |
size 9295
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: RoombaAToB-harcodemap-punish-stagnant-no-training
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: RoombaAToB-harcodemap-punish-stagnant-no-training
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 138.67 +/- 0.00
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f940f0fd2d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f940f0fd360>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f940f0fd3f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f940f0fd480>", "_build": "<function ActorCriticPolicy._build at 0x7f940f0fd510>", "forward": "<function ActorCriticPolicy.forward at 0x7f940f0fd5a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f940f0fd630>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f940f0fd6c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f940f0fd750>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f940f0fd7e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f940f0fd870>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f940f0fd900>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f940f4289c0>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 24576, "_total_timesteps": 20000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681940671627771496, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAJ6wl0IwY7W/uoqLQgAAyEKAaJpBAADIQgAAyEIAAMhCAADIQgAAyEKWBH5CoCE9PwAAyEIAAMhCAADIQgAAyEJaFptCdAquQYPQDkIAAMhCWqg/Q+IMfD81mbJByRUbQgC8mUIvT7VCAADIQgAAyEIAAMhC8RKJQYLWoUJ+rpc/AADIQgAAyEIAAMhChlA3QgAAyEIAAMhCOOY3QgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.2287999999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIipKQSFsuesCUhpRSlIwBbJRLD4wBdJRHQEkkmv4dp7F1fZQoaAZoCWgPQwirdeJyfGZ/wJSGlFKUaBVLRGgWR0BJJ7WuoxYadX2UKGgGaAloD0MIzzC1pa5GhMCUhpRSlGgVS3toFkdASU4gDA8B/HV9lChoBmgJaA9DCOqT3GETlHzAlIaUUpRoFUsoaBZHQEldlEqlP8B1fZQoaAZoCWgPQwgN/KiG3aiBwJSGlFKUaBVLOWgWR0BJe05lvqC6dX2UKGgGaAloD0MIPlxy3CnRfsCUhpRSlGgVSzFoFkdASZ2TvAoG6nV9lChoBmgJaA9DCF02Oudn4XnAlIaUUpRoFUsNaBZHQEm0CkoF3ZB1fZQoaAZoCWgPQwjLDvEPW+J1wJSGlFKUaBVLQWgWR0BJyEBCD28JdX2UKGgGaAloD0MIQdZTq29Wf8CUhpRSlGgVSzFoFkdASc23z+WGAXV9lChoBmgJaA9DCBCVRsyc25RAlIaUUpRoFUsfaBZHQEnphLoOhCd1fZQoaAZoCWgPQwgpQX+htyKVQJSGlFKUaBVLJWgWR0BKBDBVMmF8dX2UKGgGaAloD0MIKzI6IKlhgcCUhpRSlGgVS8FoFkdASgYUQCjk/HV9lChoBmgJaA9DCBWPi2qRX3vAlIaUUpRoFUswaBZHQEoZh6Skj5d1fZQoaAZoCWgPQwjartAHe46VQJSGlFKUaBVLI2gWR0BKVGo73fygdX2UKGgGaAloD0MIInAk0GBLfMCUhpRSlGgVSzFoFkdASlY2606YFHV9lChoBmgJaA9DCBMM5xrmzIDAlIaUUpRoFUs/aBZHQEpt3j+717J1fZQoaAZoCWgPQwgYJ77akSV5wJSGlFKUaBVLK2gWR0BO63fyf+S9dX2UKGgGaAloD0MIqJAr9WxudcCUhpRSlGgVS3ZoFkdATvXryDqW1XV9lChoBmgJaA9DCOli00ohOn3AlIaUUpRoFUs9aBZHQE8IlANXo1V1fZQoaAZoCWgPQwjlDpvIDJl0wJSGlFKUaBVLSGgWR0BPiTnJT2nLdX2UKGgGaAloD0MI4IJsWb7nd8CUhpRSlGgVS29oFkdAT6v9Hc1wYXV9lChoBmgJaA9DCEFhUKbRhX/AlIaUUpRoFUs9aBZHQE/4tFrl/6R1fZQoaAZoCWgPQwiM1lHVRDR/wJSGlFKUaBVLlWgWR0BP/wzUI9kjdX2UKGgGaAloD0MI6dUApUHAgcCUhpRSlGgVS2BoFkdAUCP2exwAEXV9lChoBmgJaA9DCAIPDCD8KHjAlIaUUpRoFUvuaBZHQFAk1rIo3Jh1fZQoaAZoCWgPQwhxr8xbNfh8wJSGlFKUaBVLOWgWR0BQKh2r4nF6dX2UKGgGaAloD0MIdAgcCTSad8CUhpRSlGgVS0VoFkdAUDCK77Kq43V9lChoBmgJaA9DCOPBFrt94HrAlIaUUpRoFUsvaBZHQFBMA9V3ljp1fZQoaAZoCWgPQwiAEMmQIxd/wJSGlFKUaBVLO2gWR0BQXa4YrJ8wdX2UKGgGaAloD0MIXOffLruCecCUhpRSlGgVSw5oFkdAUGj4vexfOXV9lChoBmgJaA9DCBMM5xpm33XAlIaUUpRoFUtFaBZHQFBtWkadc0N1fZQoaAZoCWgPQwiWQ4ts58t1wJSGlFKUaBVLP2gWR0BQgM1fmcOLdX2UKGgGaAloD0MIPBHEeXgBd8CUhpRSlGgVS4BoFkdAUJLufEn9enV9lChoBmgJaA9DCJ1jQPb6v33AlIaUUpRoFUsxaBZHQFCVCoS+QEJ1fZQoaAZoCWgPQwj1E85urXN3wJSGlFKUaBVLQ2gWR0BQtsANoakzdX2UKGgGaAloD0MItOTxtPwtf8CUhpRSlGgVS5JoFkdAUNzdRBNVR3V9lChoBmgJaA9DCPKaV3UWOnTAlIaUUpRoFUtAaBZHQFDrHCXQdCF1fZQoaAZoCWgPQwixNPCjWtB+wJSGlFKUaBVLmWgWR0BRD+xwAEMcdX2UKGgGaAloD0MIo+pXOn/sgMCUhpRSlGgVS71oFkdAUS/lS0jTrnV9lChoBmgJaA9DCPt0PGYgrHXAlIaUUpRoFUuCaBZHQFFNe1rqMWJ1fZQoaAZoCWgPQwg+sOO/gLlwwJSGlFKUaBVLSmgWR0BRTizC1qnFdX2UKGgGaAloD0MIJHuEmuH5c8CUhpRSlGgVSzdoFkdAUV96OYIBzXV9lChoBmgJaA9DCGlyMQbWHHLAlIaUUpRoFUtJaBZHQFGE4uK4x1x1fZQoaAZoCWgPQwgGuCBbNhuAwJSGlFKUaBVLN2gWR0BRhkEs8PnTdX2UKGgGaAloD0MIylTBqKRgcsCUhpRSlGgVS1BoFkdAUYmbI91U2nV9lChoBmgJaA9DCDvfT43XsXrAlIaUUpRoFU0NAWgWR0BRwiuEEkjYdX2UKGgGaAloD0MILZeNzrlGgcCUhpRSlGgVS3JoFkdAUdlXvH93r3V9lChoBmgJaA9DCC9P54oS5ILAlIaUUpRoFUt6aBZHQFHiOt4iX6Z1fZQoaAZoCWgPQwgEkUWaOHd0wJSGlFKUaBVLuGgWR0BSBZHqeK8+dX2UKGgGaAloD0MI9rUuNcKyccCUhpRSlGgVSz9oFkdAUgsYEW69TXV9lChoBmgJaA9DCPpDM08u+HrAlIaUUpRoFUsyaBZHQFIkVCXyAhB1fZQoaAZoCWgPQwiBWgwepnSBwJSGlFKUaBVLPGgWR0BSJO/Ho5ggdX2UKGgGaAloD0MIgIEgQIaff8CUhpRSlGgVS5toFkdAUjY6Oo5xR3V9lChoBmgJaA9DCNlfdk8OVpVAlIaUUpRoFUsqaBZHQFI8sH0K7Zp1fZQoaAZoCWgPQwj3kPC9v+V2wJSGlFKUaBVL9WgWR0BSTVy7wrlOdX2UKGgGaAloD0MI06V/SaoqfcCUhpRSlGgVSzhoFkdAUk3PgNwzcnV9lChoBmgJaA9DCLLV5ZRAPoDAlIaUUpRoFUtmaBZHQFJXWn0kGA11fZQoaAZoCWgPQwjz5nCtNl12wJSGlFKUaBVLh2gWR0BSdBaHKwIMdX2UKGgGaAloD0MIJZS+ELJtd8CUhpRSlGgVS2loFkdAUni21D0Dl3V9lChoBmgJaA9DCDhKXp1jH3jAlIaUUpRoFUtjaBZHQFJ9G4qgAZN1fZQoaAZoCWgPQwicTrLV5Yh0wJSGlFKUaBVLQGgWR0BSmAvcrRShdX2UKGgGaAloD0MIym37HvXWd8CUhpRSlGgVS0FoFkdAUrOax5cC5nV9lChoBmgJaA9DCMpwPJ+hwIDAlIaUUpRoFUuaaBZHQFK4/QSi/PB1fZQoaAZoCWgPQwi8lSU6Czx9wJSGlFKUaBVLlWgWR0BSwl6u4gA7dX2UKGgGaAloD0MIv4I0Y1Fxe8CUhpRSlGgVTSABaBZHQFLN9kz41xd1fZQoaAZoCWgPQwieI/JdytB5wJSGlFKUaBVLDWgWR0BS0pvkzXSSdX2UKGgGaAloD0MI+l5DcFwOfsCUhpRSlGgVSzpoFkdAUt+K8+Roy3V9lChoBmgJaA9DCLPNjenJ6X/AlIaUUpRoFUsnaBZHQFLnE8q4H5d1fZQoaAZoCWgPQwh4swbvK8J3wJSGlFKUaBVLfWgWR0BS9FAE+xGEdX2UKGgGaAloD0MI8bxUbMzIfsCUhpRSlGgVS3doFkdAUvmjM3ZPEnV9lChoBmgJaA9DCFiOkIH8MXPAlIaUUpRoFUtHaBZHQFMVexfOUt91fZQoaAZoCWgPQwj6QV2kUNV9wJSGlFKUaBVLNGgWR0BTGgWrOqvNdX2UKGgGaAloD0MIJLa7B6gkeMCUhpRSlGgVS2ZoFkdAUx6Haews5HV9lChoBmgJaA9DCB5Pyw+cnnbAlIaUUpRoFUt9aBZHQFNDNiH6/It1fZQoaAZoCWgPQwg3qP3WzitzwJSGlFKUaBVLSGgWR0BTSxyfcvdudX2UKGgGaAloD0MI7gp9sAw3ecCUhpRSlGgVS2VoFkdAU1A7uDzy0HV9lChoBmgJaA9DCHv18dB3vnzAlIaUUpRoFUszaBZHQFNghIvrWy11fZQoaAZoCWgPQwj1aRX9IaJ0wJSGlFKUaBVLRGgWR0BTcs3hn8KpdX2UKGgGaAloD0MIAkpDjUKdd8CUhpRSlGgVS3RoFkdAU33HKfWc0HV9lChoBmgJaA9DCJ7uPPE8r4DAlIaUUpRoFUs8aBZHQFOBLbYbsGB1fZQoaAZoCWgPQwinyYy31WV4wJSGlFKUaBVL5GgWR0BTjyiVSn+AdX2UKGgGaAloD0MIai+i7TgigMCUhpRSlGgVSzxoFkdAU5eGvfTCtXV9lChoBmgJaA9DCMb6BiYHF5VAlIaUUpRoFUtMaBZHQFOarbg0j1R1fZQoaAZoCWgPQwiJKZFEL756wJSGlFKUaBVLNGgWR0BTpkvf0mMPdX2UKGgGaAloD0MIlE4kmGqMdcCUhpRSlGgVS39oFkdAU6tvjwQUYnV9lChoBmgJaA9DCMjShy7IG4DAlIaUUpRoFUsxaBZHQFO0SBK+SKZ1fZQoaAZoCWgPQwjGTQ0032l4wJSGlFKUaBVLFGgWR0BTw4sRQJokdX2UKGgGaAloD0MIQu4iTJFPdsCUhpRSlGgVS0xoFkdAU+V9tuUD+3V9lChoBmgJaA9DCOElOPXBaHnAlIaUUpRoFUt9aBZHQFPoT6BRQ791fZQoaAZoCWgPQwgB323e+Fd5wJSGlFKUaBVLDGgWR0BT6b7wazeGdX2UKGgGaAloD0MIBJDaxClngMCUhpRSlGgVS5toFkdAU/kFwDNhVnV9lChoBmgJaA9DCAPso1NnPpRAlIaUUpRoFUvRaBZHQFQHNAkcCHR1fZQoaAZoCWgPQwj/Bu3VB7F/wJSGlFKUaBVLKmgWR0BUETc6/7BPdX2UKGgGaAloD0MIjup0ICsrdMCUhpRSlGgVSzZoFkdAVCOV7hNucnV9lChoBmgJaA9DCNGuQspPmXjAlIaUUpRoFUsvaBZHQFQn5xR2r4p1fZQoaAZoCWgPQwh6UiY1dKtzwJSGlFKUaBVLfGgWR0BUJ//NqxkedX2UKGgGaAloD0MIGAtD5HTOe8CUhpRSlGgVS4FoFkdAVCh2ovSMLnV9lChoBmgJaA9DCJ9ZEqDmOXXAlIaUUpRoFUtHaBZHQFRCfYBeXzF1fZQoaAZoCWgPQwjXNO84hSZ8wJSGlFKUaBVLMmgWR0BUX/J/5LyudX2UKGgGaAloD0MIIM8u37pBecCUhpRSlGgVS3BoFkdAVGEY3vQWvnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 30, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f36f68e52d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f36f68e5360>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f36f68e53f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f36f68e5480>", "_build": "<function ActorCriticPolicy._build at 0x7f36f68e5510>", "forward": "<function ActorCriticPolicy.forward at 0x7f36f68e55a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f36f68e5630>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f36f68e56c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f36f68e5750>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f36f68e57e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f36f68e5870>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f36f68e5900>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f36f68d23c0>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 24576, "_total_timesteps": 20000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681940879795278580, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAANZ6rELTgiU/AADIQgAAyEIxQZhC3imjQgAAyEL0e69CbxKPQgAAyELf5OJCkscNPwAAyEIAAMhCU/4jQt9gNkKqFX5CAADIQgAAyEKfzn1C+wjkQiA6KT8AAMhCAABIQgAAIEIAAEhCAACMQgAAyEIAAMhC8zxpQiz0i0IZiwNAAADIQgAAyEIs6JlCAADIQgAAyEIAAMhCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.2287999999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINzemJ+zndsCUhpRSlIwBbJRLf4wBdJRHQEqO/PgNwzd1fZQoaAZoCWgPQwgQzxJkhLmIwJSGlFKUaBVLqmgWR0BKn1yWAwwkdX2UKGgGaAloD0MI6Q33kbt2gMCUhpRSlGgVS3RoFkdASqGWpqASWnV9lChoBmgJaA9DCOiiIeNRsYfAlIaUUpRoFUu3aBZHQEqlV4oqkM11fZQoaAZoCWgPQwgOETen0th8wJSGlFKUaBVLNWgWR0BK2j8cdYGMdX2UKGgGaAloD0MI4nZoWAzifcCUhpRSlGgVSzloFkdASu8rmQr+YXV9lChoBmgJaA9DCL+er1luR4HAlIaUUpRoFUtDaBZHQEsERKYiPhh1fZQoaAZoCWgPQwgmcOtuPlSBwJSGlFKUaBVLTmgWR0BLDIHTqjagdX2UKGgGaAloD0MIO29jszMmlUCUhpRSlGgVSyRoFkdASyvFYMfA9HV9lChoBmgJaA9DCGYTYFh+E4DAlIaUUpRoFUs3aBZHQEss24uscQ11fZQoaAZoCWgPQwj+mNamcUp7wJSGlFKUaBVLNGgWR0BLWwcxTKkmdX2UKGgGaAloD0MIQbgCCvV4esCUhpRSlGgVSzloFkdAS1t4C6pYLnV9lChoBmgJaA9DCEoKLIDp2ZRAlIaUUpRoFUslaBZHQEtfbW3BpHt1fZQoaAZoCWgPQwgIsMiv30eVQJSGlFKUaBVLIWgWR0BLgK7iADq4dX2UKGgGaAloD0MIbjMV4tHaf8CUhpRSlGgVS05oFkdAS4za/RE4N3V9lChoBmgJaA9DCC16pwJuInzAlIaUUpRoFUs6aBZHQEujRMvh60J1fZQoaAZoCWgPQwgxzt+EApiCwJSGlFKUaBVLOmgWR0BLz5YxL0z1dX2UKGgGaAloD0MIjpCBPLteesCUhpRSlGgVSzFoFkdAS9E163RXwXV9lChoBmgJaA9DCDkOvFpOyZRAlIaUUpRoFUsjaBZHQEvXQa72+PB1fZQoaAZoCWgPQwghPrDj/7p4wJSGlFKUaBVLcWgWR0BL73NcGC7LdX2UKGgGaAloD0MIsMka9UCTlUCUhpRSlGgVSyFoFkdATAJUDMeOn3V9lChoBmgJaA9DCCNMUS7t54HAlIaUUpRoFUs6aBZHQEwoMvRJEpl1fZQoaAZoCWgPQwhdNjrnp7F6wJSGlFKUaBVLNGgWR0BMRTxXnyNGdX2UKGgGaAloD0MIIhgHl45OfsCUhpRSlGgVS0FoFkdATGi3I+4b0nV9lChoBmgJaA9DCORJ0jUTJYDAlIaUUpRoFUt9aBZHQEyde0G/vfF1fZQoaAZoCWgPQwh8tDhjiL+VQJSGlFKUaBVLIGgWR0BMnwfZElVtdX2UKGgGaAloD0MI98snKyYJgMCUhpRSlGgVS2xoFkdATNsehf0Eo3V9lChoBmgJaA9DCEaVYdyNanjAlIaUUpRoFUuCaBZHQE0bH6Mzdk91fZQoaAZoCWgPQwgMAiuHlol6wJSGlFKUaBVLL2gWR0BNK1hTfixWdX2UKGgGaAloD0MIwHlx4uuWeMCUhpRSlGgVSz1oFkdAUNEvBacI7nV9lChoBmgJaA9DCPhUTnvqqIDAlIaUUpRoFUvBaBZHQFDpunMt9QZ1fZQoaAZoCWgPQwge+u5WVrd8wJSGlFKUaBVLNGgWR0BQ6q3uuzQedX2UKGgGaAloD0MIP47myEqmdMCUhpRSlGgVS31oFkdAUOvMKTjebnV9lChoBmgJaA9DCHKJIw8ERXPAlIaUUpRoFUtCaBZHQFEN6KtPpIN1fZQoaAZoCWgPQwhrD3uhAE5gQJSGlFKUaBVNLQFoFkdAUR8m4RVZLnV9lChoBmgJaA9DCDffiO5ZuHbAlIaUUpRoFUs9aBZHQFEqZUT+NtJ1fZQoaAZoCWgPQwhbXyS0ZdF9wJSGlFKUaBVLpWgWR0BRQIBV+7UYdX2UKGgGaAloD0MIuYrFb0qnesCUhpRSlGgVSzRoFkdAUUTT2FnIyXV9lChoBmgJaA9DCK0Tl+PVk3/AlIaUUpRoFUt/aBZHQFFkwpvxYq51fZQoaAZoCWgPQwhuwVJdgMR6wJSGlFKUaBVLO2gWR0BRaqkAPuohdX2UKGgGaAloD0MIdeRIZ+CdfsCUhpRSlGgVS09oFkdAUXF31SOzY3V9lChoBmgJaA9DCJCEfTtptoLAlIaUUpRoFU0BAWgWR0BRdcJD3M6jdX2UKGgGaAloD0MIWwndJXEIdsCUhpRSlGgVS0poFkdAUZczAN5MUXV9lChoBmgJaA9DCGWp9X7jw3rAlIaUUpRoFUs4aBZHQFGZ3w1BMSN1fZQoaAZoCWgPQwihL739uUtzwJSGlFKUaBVLUGgWR0BRpXN9ph4MdX2UKGgGaAloD0MIhxdEpGa7f8CUhpRSlGgVS4NoFkdAUcX2pQ1rI3V9lChoBmgJaA9DCGhdo+UAXnvAlIaUUpRoFUtIaBZHQFHL8yeqaPV1fZQoaAZoCWgPQwgO8+UF2BZ9wJSGlFKUaBVLPGgWR0BR06jzqbBodX2UKGgGaAloD0MIyqSGNkAFecCUhpRSlGgVS4VoFkdAUgAhgVoHs3V9lChoBmgJaA9DCFDj3vym2IDAlIaUUpRoFUtFaBZHQFIKiSq2jO91fZQoaAZoCWgPQwgvih742P54wJSGlFKUaBVLc2gWR0BSJWfbsWwedX2UKGgGaAloD0MIfLq6Y3E9f8CUhpRSlGgVSzloFkdAUlbGza9K3HV9lChoBmgJaA9DCAGmDBwQJoHAlIaUUpRoFUtqaBZHQFJg2KVII4V1fZQoaAZoCWgPQwheLuI7USWEwJSGlFKUaBVLmWgWR0BSmIsiB5HFdX2UKGgGaAloD0MIwk6xapAfecCUhpRSlGgVTQsBaBZHQFK4Jxeb/fh1fZQoaAZoCWgPQwi9xi5Rfah3wJSGlFKUaBVLg2gWR0BS0HyVfNRndX2UKGgGaAloD0MIdeRIZ6ADdsCUhpRSlGgVS0doFkdAUtfJ5mh/RXV9lChoBmgJaA9DCNQs0O6Q+3fAlIaUUpRoFUuMaBZHQFLf42S+xnp1fZQoaAZoCWgPQwjovpzZ7tpxwJSGlFKUaBVLTmgWR0BTH/0yxiXqdX2UKGgGaAloD0MIrS8S2vJodMCUhpRSlGgVS0ZoFkdAUyE6vJRwZXV9lChoBmgJaA9DCCuFQC7x5H/AlIaUUpRoFUt1aBZHQFM8Gn4wh4d1fZQoaAZoCWgPQwiCcXDp2Kl6wJSGlFKUaBVLoWgWR0BTSMB2fTTfdX2UKGgGaAloD0MIZRniWJeadMCUhpRSlGgVS1NoFkdAU4QQz1schnV9lChoBmgJaA9DCHXniefsMILAlIaUUpRoFUt8aBZHQFOOod+5OJt1fZQoaAZoCWgPQwhwW1t43lV7wJSGlFKUaBVLM2gWR0BTuqHbh3qzdX2UKGgGaAloD0MI+b64VGXKfcCUhpRSlGgVS9BoFkdAU9cEZBLPEHV9lChoBmgJaA9DCKRS7GjcY3XAlIaUUpRoFUtCaBZHQFPu7CiyprF1fZQoaAZoCWgPQwiP44dKo4B1wJSGlFKUaBVLwmgWR0BT72ZZ0SyudX2UKGgGaAloD0MIP5C8c8hAgMCUhpRSlGgVSy1oFkdAVAuscQyylnV9lChoBmgJaA9DCACo4sYteHvAlIaUUpRoFUs5aBZHQFQSrilzltF1fZQoaAZoCWgPQwjN5JttbpV4wJSGlFKUaBVL5WgWR0BULW5paibldX2UKGgGaAloD0MIzy10JQJcdcCUhpRSlGgVS1doFkdAVDwuZkTYd3V9lChoBmgJaA9DCNBCAkaX+HbAlIaUUpRoFUt3aBZHQFRPvjwQUYd1fZQoaAZoCWgPQwjf3jXoyz97wJSGlFKUaBVLPGgWR0BUVmLtNSIhdX2UKGgGaAloD0MINnaJ6u1Oe8CUhpRSlGgVSzdoFkdAVGXOGCZnc3V9lChoBmgJaA9DCAFNhA0PF4DAlIaUUpRoFU0bAWgWR0BUb3O4XoC/dX2UKGgGaAloD0MImx9/adHlfsCUhpRSlGgVSzNoFkdAVHz1dxAB1nV9lChoBmgJaA9DCOHRxhFr9XjAlIaUUpRoFUt9aBZHQFSOyd4FA3V1fZQoaAZoCWgPQwj6Yu/FVwZ1wJSGlFKUaBVLRmgWR0BUkOeSSvC/dX2UKGgGaAloD0MIuoJtxFPAesCUhpRSlGgVSzZoFkdAVJXyauwHJXV9lChoBmgJaA9DCK9gG/GkXHrAlIaUUpRoFUsxaBZHQFShWluWKMx1fZQoaAZoCWgPQwgW/DbEeKp+wJSGlFKUaBVLQmgWR0BUq996Tnq3dX2UKGgGaAloD0MIlUbM7PPQL0CUhpRSlGgVTS0BaBZHQFSzPS2H+Id1fZQoaAZoCWgPQwh+xK9Yox6AwJSGlFKUaBVLQ2gWR0BUzJS3solVdX2UKGgGaAloD0MIox6i0R2qf8CUhpRSlGgVS7VoFkdAVQOa6STyKHV9lChoBmgJaA9DCHTOT3Ecg3jAlIaUUpRoFUuCaBZHQFUXFeOXE611fZQoaAZoCWgPQwgVV5V9V6Q1QJSGlFKUaBVNLQFoFkdAVUIqgAZKnXV9lChoBmgJaA9DCIlA9Q9ihXnAlIaUUpRoFU0BAWgWR0BVUZBHCoCNdX2UKGgGaAloD0MIwHXFjDD6f8CUhpRSlGgVS05oFkdAVVLabnX/YXV9lChoBmgJaA9DCKX4+IRsvH/AlIaUUpRoFUs4aBZHQFVp5ftx+8Z1fZQoaAZoCWgPQwhFm+PcpjiUQJSGlFKUaBVLYmgWR0BVpUOZssQNdX2UKGgGaAloD0MIvY44ZCP/gMCUhpRSlGgVS3NoFkdAVbEjv/io9HV9lChoBmgJaA9DCJZfBmPELnnAlIaUUpRoFUt5aBZHQFXUbrTpgTh1fZQoaAZoCWgPQwizI9V3/oOBwJSGlFKUaBVNHwFoFkdAVeaujh1klXV9lChoBmgJaA9DCHTudr20o3/AlIaUUpRoFUtMaBZHQFXpxDLKV6h1fZQoaAZoCWgPQwjXbVD7rd16wJSGlFKUaBVLN2gWR0BWA6Qmu1WsdX2UKGgGaAloD0MIcceb/JaSfcCUhpRSlGgVS6FoFkdAVj7Jr+Hae3V9lChoBmgJaA9DCCr9hLPb/3bAlIaUUpRoFUtHaBZHQFZDUn5SFXd1fZQoaAZoCWgPQwjBOLh0jCB5wJSGlFKUaBVLgGgWR0BWWPX9R77bdX2UKGgGaAloD0MIq3gj80jjdsCUhpRSlGgVS4NoFkdAVlm9FnZkCnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 30, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a72d4e55ae1e21ed012d99e439b3ca65444d1b6f09a7c661bea55b693489107
|
3 |
+
size 875618
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 138.6684647495351, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T14:49:55.383670"}
|