Upload model to Hugging Face
Browse files
BC-harcodemap-punish-stagnant-no-training.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e8b1636bb1950e2cf74517b0941b40b9fb9567c19d4167d5120d4d156c268d1
|
3 |
+
size 44013
|
BC-harcodemap-punish-stagnant-no-training/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
@@ -48,7 +48,7 @@
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -70,7 +70,7 @@
|
|
70 |
"_current_progress_remaining": -0.09226666666666672,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc03a5f52d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc03a5f5360>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc03a5f53f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc03a5f5480>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc03a5f5510>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc03a5f55a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc03a5f5630>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc03a5f56c0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc03a5f5750>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc03a5f57e0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc03a5f5870>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc03a5f5900>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fc03a5f1680>"
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1681941780212283514,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAD5xI0P8C4I/IWNsQmKrv0G6r4tBnHYzQR7RQUEAAMhCAADIQgAAyEJRYgJDKhURPwAAyEIAAEhCAAAgQvM8aUIAAEhCAADIQgAAyELoC6xCqOwKQ+MvBz+a7KRCAABIQgAAIELYOBBCAAAgQgAAyEIAAMhC/K28QqjsCkPjLwc/muykQgAASEIAACBC2DgQQgAAIEIAAMhCAADIQvytvEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
70 |
"_current_progress_remaining": -0.09226666666666672,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfhmMEW0AucCUhpRSlIwBbJRLC4wBdJRHQGv3KoqCpWF1fZQoaAZoCWgPQwj5hVeSrDK6wJSGlFKUaBVLDGgWR0Br9yjJuEVWdX2UKGgGaAloD0MIda29T8WTusCUhpRSlGgVSxJoFkdAa/kE7nxJ/XV9lChoBmgJaA9DCEWeJF3D/rrAlIaUUpRoFUsHaBZHQGv5EQXhwVF1fZQoaAZoCWgPQwgV4SajKsy6wJSGlFKUaBVLDWgWR0Br+VQKrq+rdX2UKGgGaAloD0MI/G8lOz7zu8CUhpRSlGgVSw5oFkdAa/qFRHf/FXV9lChoBmgJaA9DCGYS9YJrM7rAlIaUUpRoFUsJaBZHQGv64REnb7F1fZQoaAZoCWgPQwhmEvWCazO6wJSGlFKUaBVLCWgWR0Br+xI6Kcd6dX2UKGgGaAloD0MIQUgWME1Ju8CUhpRSlGgVSwpoFkdAa/sVII4VAXV9lChoBmgJaA9DCGppboWsT7vAlIaUUpRoFUsIaBZHQGv8BHbypaR1fZQoaAZoCWgPQwiALESHFFC7wJSGlFKUaBVLB2gWR0Br/DN+so2GdX2UKGgGaAloD0MIIlFoWVv+usCUhpRSlGgVSwhoFkdAa/yNIbwSanV9lChoBmgJaA9DCKmG/Z6QoLvAlIaUUpRoFUsKaBZHQGv8+XzDn/11fZQoaAZoCWgPQwgOhGQBb1C7wJSGlFKUaBVLBmgWR0Br/TL2YfGNdX2UKGgGaAloD0MIeawZGVCfusCUhpRSlGgVSwhoFkdAa/25NGmUGHV9lChoBmgJaA9DCIAsRIcUULvAlIaUUpRoFUsHaBZHQGv+Q6hg3Lp1fZQoaAZoCWgPQwjyQc9mEY67wJSGlFKUaBVLDGgWR0Br/tLg4wRHdX2UKGgGaAloD0MIZhL1gmszusCUhpRSlGgVSwloFkdAa/9mL9/BnHV9lChoBmgJaA9DCNFZZhHCw7jAlIaUUpRoFUsNaBZHQGv/o91U2k11fZQoaAZoCWgPQwgiUWhZW/66wJSGlFKUaBVLCGgWR0Br/+FlCkXUdX2UKGgGaAloD0MIu2BwzWFPu8CUhpRSlGgVSwloFkdAbADO7g88tHV9lChoBmgJaA9DCKmG/Z6QoLvAlIaUUpRoFUsKaBZHQGwB4ao/A0t1fZQoaAZoCWgPQwioxHWMI6C7wJSGlFKUaBVLDGgWR0BsAhnnMdLhdX2UKGgGaAloD0MIrYVZaFu5usCUhpRSlGgVSw1oFkdAbAIbPyCnP3V9lChoBmgJaA9DCCJRaFlb/rrAlIaUUpRoFUsIaBZHQGwCSH2ys0Z1fZQoaAZoCWgPQwhqaW6FrE+7wJSGlFKUaBVLCGgWR0BsA1sYVIqcdX2UKGgGaAloD0MIIlFoWVv+usCUhpRSlGgVSwhoFkdAbAOO0b961XV9lChoBmgJaA9DCA0AVdzwu7nAlIaUUpRoFUsLaBZHQGwEHzYmLLp1fZQoaAZoCWgPQwhQbtv3ZN26wJSGlFKUaBVLCmgWR0BsBBxYJVsDdX2UKGgGaAloD0MIu2BwzWFPu8CUhpRSlGgVSwloFkdAbAU/WUbDM3V9lChoBmgJaA9DCLjJqDI08LrAlIaUUpRoFUsKaBZHQGwFRMnJDE51fZQoaAZoCWgPQwhmEvWCazO6wJSGlFKUaBVLCWgWR0BsBehCdBjXdX2UKGgGaAloD0MIzoqoiUZ7usCUhpRSlGgVSwtoFkdAbAZeVLSNO3V9lChoBmgJaA9DCIrJG2A2RrvAlIaUUpRoFUsKaBZHQGwHX5eqrBF1fZQoaAZoCWgPQwhFniRdw/66wJSGlFKUaBVLB2gWR0BsB2BOHnEEdX2UKGgGaAloD0MIrWhznE+EusCUhpRSlGgVSwtoFkdAbAeWAPNFB3V9lChoBmgJaA9DCCJRaFlb/rrAlIaUUpRoFUsIaBZHQGwH+eOGTLZ1fZQoaAZoCWgPQwhmEvWCazO6wJSGlFKUaBVLCWgWR0BsCP2wmmcfdX2UKGgGaAloD0MIZhL1gmszusCUhpRSlGgVSwloFkdAbAkyk9ECvHV9lChoBmgJaA9DCK4NFeMcALnAlIaUUpRoFUsMaBZHQGwJmQSzw+d1fZQoaAZoCWgPQwju68A54yK7wJSGlFKUaBVLC2gWR0BsCgSi/O+qdX2UKGgGaAloD0MIamluhaxPu8CUhpRSlGgVSwhoFkdAbAqmIj4YanV9lChoBmgJaA9DCGYS9YJrM7rAlIaUUpRoFUsJaBZHQGwLDvmYBvJ1fZQoaAZoCWgPQwgOhGQBb1C7wJSGlFKUaBVLBmgWR0BsC0mQbMoudX2UKGgGaAloD0MIIlFoWVv+usCUhpRSlGgVSwhoFkdAbAtMewLVnXV9lChoBmgJaA9DCO7rwDnjIrvAlIaUUpRoFUsLaBZHQGwMvQv6CUZ1fZQoaAZoCWgPQwi7YHDNYU+7wJSGlFKUaBVLCWgWR0BsDPkmx+rmdX2UKGgGaAloD0MIrWhznE+EusCUhpRSlGgVSwtoFkdAbA0okRjBmHV9lChoBmgJaA9DCDYDXJAhw7rAlIaUUpRoFUsNaBZHQGwNwNLDhtN1fZQoaAZoCWgPQwhmEvWCazO6wJSGlFKUaBVLCWgWR0BsDrmdRR/FdX2UKGgGaAloD0MINGd9yoWqusCUhpRSlGgVSwloFkdAbA7nTRYzSHV9lChoBmgJaA9DCEUNpmGAcbrAlIaUUpRoFUsLaBZHQGwO6hYeT3Z1fZQoaAZoCWgPQwiALESHFFC7wJSGlFKUaBVLB2gWR0BsDyQA+6iCdX2UKGgGaAloD0MIZhL1gmszusCUhpRSlGgVSwloFkdAbBBqhUR3/3V9lChoBmgJaA9DCLtgcM1hT7vAlIaUUpRoFUsJaBZHQGwQliKBNEh1fZQoaAZoCWgPQwiKyRtgNka7wJSGlFKUaBVLCmgWR0BsEMuvllshdX2UKGgGaAloD0MIeLMG789nusCUhpRSlGgVSwtoFkdAbBEsOG0u2HV9lChoBmgJaA9DCA6EZAFvULvAlIaUUpRoFUsGaBZHQGwRkxqO9391fZQoaAZoCWgPQwhFniRdw/66wJSGlFKUaBVLB2gWR0BsEhg7YChfdX2UKGgGaAloD0MIIlFoWVv+usCUhpRSlGgVSwhoFkdAbBLgNwzch3V9lChoBmgJaA9DCA6EZAFvULvAlIaUUpRoFUsGaBZHQGwTG16Vt411fZQoaAZoCWgPQwgOhGQBb1C7wJSGlFKUaBVLBmgWR0BsE4H7gsK9dX2UKGgGaAloD0MIu2BwzWFPu8CUhpRSlGgVSwloFkdAbBSsXizcAXV9lChoBmgJaA9DCHmsGRlQn7rAlIaUUpRoFUsIaBZHQGwVJng5zYF1fZQoaAZoCWgPQwhgcw6eZZC7wJSGlFKUaBVLC2gWR0BsFVhZyMkydX2UKGgGaAloD0MIQdXo1YT5ucCUhpRSlGgVSw9oFkdAbBXnf2saKnV9lChoBmgJaA9DCNRIS+VxDrrAlIaUUpRoFUsJaBZHQGwW1OTJQtV1fZQoaAZoCWgPQwjOiqiJRnu6wJSGlFKUaBVLC2gWR0BsFtSEUTL4dX2UKGgGaAloD0MI+n3/5kWgu8CUhpRSlGgVSwtoFkdAbBdi1AqusHV9lChoBmgJaA9DCMVx4NUeULrAlIaUUpRoFUsIaBZHQGwYUIC2c8V1fZQoaAZoCWgPQwitTWN7EQO5wJSGlFKUaBVLDWgWR0BsGFNahYeUdX2UKGgGaAloD0MIZhL1gmszusCUhpRSlGgVSwloFkdAbBiQkHD77HV9lChoBmgJaA9DCDI89rMwvLnAlIaUUpRoFUsKaBZHQGwZRywOe8R1fZQoaAZoCWgPQwh5rBkZUJ+6wJSGlFKUaBVLCGgWR0BsGpSJj2BbdX2UKGgGaAloD0MIpn7eVBD+usCUhpRSlGgVSwloFkdAbBr9S/CZW3V9lChoBmgJaA9DCPjii/YcMrvAlIaUUpRoFUsMaBZHQGwbVzySV4Z1fZQoaAZoCWgPQwi7YHDNYU+7wJSGlFKUaBVLCWgWR0BsG7qSowVTdX2UKGgGaAloD0MIu2BwzWFPu8CUhpRSlGgVSwloFkdAbBxObAk9lnV9lChoBmgJaA9DCLtgcM1hT7vAlIaUUpRoFUsJaBZHQGwcu5z5oGp1fZQoaAZoCWgPQwj6ff/mRaC7wJSGlFKUaBVLC2gWR0BsHZGKAJ9idX2UKGgGaAloD0MIiskbYDZGu8CUhpRSlGgVSwpoFkdAbB3VtGd7OXV9lChoBmgJaA9DCLjJqDI08LrAlIaUUpRoFUsKaBZHQGweuz6ab4J1fZQoaAZoCWgPQwhBZJEmBi+7wJSGlFKUaBVLDGgWR0BsILNKRMewdX2UKGgGaAloD0MIDoRkAW9Qu8CUhpRSlGgVSwZoFkdAbCFnrY5DJHV9lChoBmgJaA9DCLAbti0mM7rAlIaUUpRoFUsKaBZHQGwhu7QLNOd1fZQoaAZoCWgPQwjOiqiJRnu6wJSGlFKUaBVLC2gWR0BsIc3XI2fkdX2UKGgGaAloD0MIIlFoWVv+usCUhpRSlGgVSwhoFkdAbCM1+iJwbXV9lChoBmgJaA9DCLtgcM1hT7vAlIaUUpRoFUsJaBZHQGwk3gk1Muh1fZQoaAZoCWgPQwgeboeGHU+7wJSGlFKUaBVLCmgWR0BsJWI9C/oJdX2UKGgGaAloD0MIpBmLpn8wu8CUhpRSlGgVSwxoFkdAbCYv+OwPiHV9lChoBmgJaA9DCPDce7h08bvAlIaUUpRoFUsMaBZHQGwnX3xnWat1fZQoaAZoCWgPQwhFniRdw/66wJSGlFKUaBVLB2gWR0BsJ2M+/xlQdX2UKGgGaAloD0MIRZ4kXcP+usCUhpRSlGgVSwdoFkdAbCfQzDXOGHV9lChoBmgJaA9DCFCpEmXzSrnAlIaUUpRoFUsMaBZHQGwoCIDYAbR1fZQoaAZoCWgPQwh5rBkZUJ+6wJSGlFKUaBVLCGgWR0BsKQHxBmf5dX2UKGgGaAloD0MIIlFoWVv+usCUhpRSlGgVSwhoFkdAbCkDxLCemXV9lChoBmgJaA9DCA6EZAFvULvAlIaUUpRoFUsGaBZHQGwp7iIcinp1fZQoaAZoCWgPQwjlettMwUG8wJSGlFKUaBVLD2gWR0BsK6EDhcZ+dX2UKGgGaAloD0MIIlFoWVv+usCUhpRSlGgVSwhoFkdAbCujhUBGQXV9lChoBmgJaA9DCGmn5nI/T7vAlIaUUpRoFUsKaBZHQGwr3gDRtxd1ZS4="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
BC-harcodemap-punish-stagnant-no-training/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 18973
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:700d16cc1352e04fae7c66b1ac1b68a67a88e9f27a1c6b360cf02213b74638eb
|
3 |
size 18973
|
BC-harcodemap-punish-stagnant-no-training/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 9295
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b433955c6ab41be11e0c0406d245b2853bf9235035239057dcf8550183c0169
|
3 |
size 9295
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: RoombaAToB-harcodemap-punish-stagnant-no-training
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -96.
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: RoombaAToB-harcodemap-punish-stagnant-no-training
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -96.44 +/- 0.00
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff3a7af12d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff3a7af1360>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff3a7af13f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff3a7af1480>", "_build": "<function ActorCriticPolicy._build at 0x7ff3a7af1510>", "forward": "<function ActorCriticPolicy.forward at 0x7ff3a7af15a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff3a7af1630>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff3a7af16c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff3a7af1750>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff3a7af17e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff3a7af1870>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff3a7af1900>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff3a7aded00>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 65536, "_total_timesteps": 60000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681941051662804231, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAJbeD0MGOjJAKAQNQttn7EEAAMhCAADIQgAAyEI3KrZCwe9nQoa/SUI14pBCjV1hP5NzPkIAAMhCAADIQgAAyEIAAMhCAADIQspRDkK+ngJCnRjaQoSxkr4/ZFJCAADIQgAAyEIoyO1BBJrxQfINXEJEp7FCAADIQsITwEIGdOM+GJUIQgAAyEIRvjhCfrpDQuxcpkIAAMhCAADIQvpBOkKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.09226666666666672, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcv4mFCI3UsCUhpRSlIwBbJRNLQGMAXSUR0Bmy6TY/Vy4dX2UKGgGaAloD0MI+FEN+/2xgsCUhpRSlGgVS5xoFkdAZuEq0+kgwHV9lChoBmgJaA9DCA+6hEPvn2DAlIaUUpRoFU0tAWgWR0Bm4UH0K7ZndX2UKGgGaAloD0MIX9IYrWNieMCUhpRSlGgVSxJoFkdAZulq1w5vL3V9lChoBmgJaA9DCGeY2lIHWQRAlIaUUpRoFU0tAWgWR0Bm8CTfR/mUdX2UKGgGaAloD0MI2sngKHnhgcCUhpRSlGgVSz5oFkdAZvqsiB5HE3V9lChoBmgJaA9DCH3KMVmc5XXAlIaUUpRoFUt+aBZHQGcAg0j1PFh1fZQoaAZoCWgPQwjYZmMlZrF5wJSGlFKUaBVLDGgWR0BnBcP6KtPpdX2UKGgGaAloD0MI5SfVPp2DgMCUhpRSlGgVS1VoFkdAZw4cSXdCV3V9lChoBmgJaA9DCCl7SzmfYoLAlIaUUpRoFUtNaBZHQGcUUcGTs6d1fZQoaAZoCWgPQwiFzmvskjWCwJSGlFKUaBVLPWgWR0BnIf/o7muDdX2UKGgGaAloD0MIHvzEAbQLgsCUhpRSlGgVSzVoFkdAZziR7JGOMnV9lChoBmgJaA9DCNbgfVUub4PAlIaUUpRoFUvnaBZHQGgtBoduHet1fZQoaAZoCWgPQwj0NctlgyaCwJSGlFKUaBVLmWgWR0BoP2DOC5EudX2UKGgGaAloD0MIuhEWFfEgecCUhpRSlGgVS1toFkdAaEn+kP+XJHV9lChoBmgJaA9DCCz0wTL273zAlIaUUpRoFU0dAWgWR0BoS2r0aqCIdX2UKGgGaAloD0MIHQQdrcpbgsCUhpRSlGgVSztoFkdAaFNWcz67/XV9lChoBmgJaA9DCJgZNsr6V0/AlIaUUpRoFU0tAWgWR0BoVOGATZg5dX2UKGgGaAloD0MIFsJqLMESgsCUhpRSlGgVSy9oFkdAaFlngYP5HnV9lChoBmgJaA9DCMSXiSIkbILAlIaUUpRoFUt8aBZHQGh5cp1A7gd1fZQoaAZoCWgPQwhEFmniXZ6BwJSGlFKUaBVLimgWR0Bof8nb7CSBdX2UKGgGaAloD0MIk8SScleogsCUhpRSlGgVS1hoFkdAaJzoL5RCQnV9lChoBmgJaA9DCDW214LewU7AlIaUUpRoFU0tAWgWR0Boqx1LamGedX2UKGgGaAloD0MIl1KXjOMiacCUhpRSlGgVTS0BaBZHQGi5j4pMHr11fZQoaAZoCWgPQwhTknU4+kmCwJSGlFKUaBVL42gWR0BoxHfqHGjsdX2UKGgGaAloD0MIFQFO76Ize8CUhpRSlGgVS1xoFkdAaMrTCtRvWHV9lChoBmgJaA9DCNe/6zNn24DAlIaUUpRoFUuUaBZHQGjO01AJLM91fZQoaAZoCWgPQwiZ9PdSuI56wJSGlFKUaBVLW2gWR0Bo4rua4MF2dX2UKGgGaAloD0MI4EvhQXPEeMCUhpRSlGgVS3doFkdAaPRhcZ9/jXV9lChoBmgJaA9DCHxkc9W8FHfAlIaUUpRoFUtdaBZHQGj/gQHzH0d1fZQoaAZoCWgPQwiBQj19RIR4wJSGlFKUaBVL7GgWR0BpBQIyCWeIdX2UKGgGaAloD0MIDwnf+zsCgsCUhpRSlGgVSz9oFkdAaQbQemvW6XV9lChoBmgJaA9DCFKY9ziT/nnAlIaUUpRoFUsOaBZHQGkKJqh11W91fZQoaAZoCWgPQwid9L7xdZ2DwJSGlFKUaBVL9WgWR0BpFXDpC8e0dX2UKGgGaAloD0MISE+RQ4RDgsCUhpRSlGgVS45oFkdAaSsFTNt65XV9lChoBmgJaA9DCJ5haktdkH7AlIaUUpRoFUv1aBZHQGlIRTbWVeN1fZQoaAZoCWgPQwhx/5HpUOyDwJSGlFKUaBVL92gWR0BpUpkf9xZMdX2UKGgGaAloD0MIRUjdzv6DcMCUhpRSlGgVTS0BaBZHQGlVH7gsK9h1fZQoaAZoCWgPQwiHURA8nlCDwJSGlFKUaBVL5WgWR0BpWlFF2FFldX2UKGgGaAloD0MIfJv+7OfBgMCUhpRSlGgVS0ZoFkdAaWZyHVPN3XV9lChoBmgJaA9DCKIlj6dlu4HAlIaUUpRoFUuUaBZHQGlrp/gBLf11fZQoaAZoCWgPQwgmGqTgKXlRwJSGlFKUaBVNLQFoFkdAaXwq7yxzJnV9lChoBmgJaA9DCJX0MLR67IHAlIaUUpRoFU0FAWgWR0BpgtzCDVYqdX2UKGgGaAloD0MIGXEBaNTBesCUhpRSlGgVS11oFkdAaZR2exwAEXV9lChoBmgJaA9DCBB4YADhXoLAlIaUUpRoFUuQaBZHQGmX7GNrCWN1fZQoaAZoCWgPQwg9mX/0Tf5BwJSGlFKUaBVNLQFoFkdAaaEur6tT1nV9lChoBmgJaA9DCC7nUlxV4jjAlIaUUpRoFU0tAWgWR0BpqkDfWMCLdX2UKGgGaAloD0MIT5MZbyvmesCUhpRSlGgVS1NoFkdAabeDwH7gsXV9lChoBmgJaA9DCBWL3xRWl3LAlIaUUpRoFUt0aBZHQGnPb6P8yet1fZQoaAZoCWgPQwj8ijVc5IF1wJSGlFKUaBVLfGgWR0Bp4aRKYiPidX2UKGgGaAloD0MIJ6JfWz9XacCUhpRSlGgVTS0BaBZHQGnyArH2h7F1fZQoaAZoCWgPQwhHPNnNjFVmwJSGlFKUaBVNLQFoFkdAafcl4TsY23V9lChoBmgJaA9DCGd9yjF5b4LAlIaUUpRoFUs/aBZHQGn3a4+bExZ1fZQoaAZoCWgPQwhEpREzWx+CwJSGlFKUaBVLjGgWR0Bp/rMotthvdX2UKGgGaAloD0MImrM+5RhxesCUhpRSlGgVS11oFkdAahiOH31zyXV9lChoBmgJaA9DCIElV7H45HrAlIaUUpRoFUtfaBZHQGoZGax5cC51fZQoaAZoCWgPQwhZhc0At4SDwJSGlFKUaBVLn2gWR0BqOswnH/96dX2UKGgGaAloD0MIk6mCUYkbe8CUhpRSlGgVS2JoFkdAakHZZB9kSXV9lChoBmgJaA9DCEa28/2UUoLAlIaUUpRoFUuIaBZHQGpTLQ5WBBl1fZQoaAZoCWgPQwhQpzy6EQZHwJSGlFKUaBVNLQFoFkdAamY73fyf+XV9lChoBmgJaA9DCBea6zQyhoLAlIaUUpRoFUtOaBZHQGqFdv863iJ1fZQoaAZoCWgPQwh0XmOXiHCDwJSGlFKUaBVLoGgWR0BrmezF+/g0dX2UKGgGaAloD0MIIH2TpkHJeMCUhpRSlGgVSxZoFkdAa6FD5TIeYHV9lChoBmgJaA9DCD9ya9KtjYLAlIaUUpRoFUvmaBZHQGunDo6jnFJ1fZQoaAZoCWgPQwgr2bERiCMxwJSGlFKUaBVNLQFoFkdAa7xFxXGOuXV9lChoBmgJaA9DCJRqn47HLHvAlIaUUpRoFUtdaBZHQGvF9Zid8Rd1fZQoaAZoCWgPQwgSM/s8JluDwJSGlFKUaBVLiGgWR0Br2hODaoMsdX2UKGgGaAloD0MIAad38X7QPUCUhpRSlGgVTS0BaBZHQGwGv6j32251fZQoaAZoCWgPQwhDVOHP8EpHwJSGlFKUaBVNLQFoFkdAbDKJC0F8onV9lChoBmgJaA9DCGEW2jnN6WLAlIaUUpRoFU0tAWgWR0BsPXnU2DQJdX2UKGgGaAloD0MIymyQSYbQgMCUhpRSlGgVSz9oFkdAbE04vN/vv3V9lChoBmgJaA9DCPX256IhKzvAlIaUUpRoFU0tAWgWR0BsVO2AoXsPdX2UKGgGaAloD0MIPPceLtkdgsCUhpRSlGgVS0xoFkdAbG01jy4FzXV9lChoBmgJaA9DCAQ6kzZV01HAlIaUUpRoFU0tAWgWR0BsgCMkyDZldX2UKGgGaAloD0MIkjtsIjNag8CUhpRSlGgVS9VoFkdAbJVeKsMiKXV9lChoBmgJaA9DCNkj1Axpd3fAlIaUUpRoFUtqaBZHQGyXswtapxZ1fZQoaAZoCWgPQwhB8zl3e6Z5wJSGlFKUaBVLC2gWR0Bsms7U5MlDdX2UKGgGaAloD0MIGCR9WgXIesCUhpRSlGgVS2toFkdAbMv2q1gH/3V9lChoBmgJaA9DCKINwAZEMFzAlIaUUpRoFU0tAWgWR0Bs1Fgnc+JQdX2UKGgGaAloD0MIEATI0JEog8CUhpRSlGgVS9poFkdAbN3VaOgg5nV9lChoBmgJaA9DCGyYofFEjVbAlIaUUpRoFU0tAWgWR0BtCQ/5ckdFdX2UKGgGaAloD0MIEjElkigbfMCUhpRSlGgVS6doFkdAbRZuYx+KCXV9lChoBmgJaA9DCFXa4hqfx3nAlIaUUpRoFUsQaBZHQG0bV8Ti84B1fZQoaAZoCWgPQwhfCaTEjv+DwJSGlFKUaBVL7WgWR0BtIlLnLaEjdX2UKGgGaAloD0MITFDDt7CGYkCUhpRSlGgVTS0BaBZHQG1GrVnVXmx1fZQoaAZoCWgPQwj7sUl+BC97wJSGlFKUaBVLXWgWR0BtTBPoFFDwdX2UKGgGaAloD0MI++k/a17kgcCUhpRSlGgVSzFoFkdAbVzaPjn3c3V9lChoBmgJaA9DCMrFGFjH01rAlIaUUpRoFU0tAWgWR0BtjablRxcWdX2UKGgGaAloD0MIaVVLOso/UMCUhpRSlGgVTS0BaBZHQG2j0B4lhPV1fZQoaAZoCWgPQwidZ+xLNihHwJSGlFKUaBVNLQFoFkdAbdZ6nivPknV9lChoBmgJaA9DCHBdMSO800nAlIaUUpRoFU0tAWgWR0Bt6HGdZq20dX2UKGgGaAloD0MIj95wH/lkgcCUhpRSlGgVSzZoFkdAbe/lmOEM9nV9lChoBmgJaA9DCCcUIuAQJlbAlIaUUpRoFU0tAWgWR0BuG5da+vhZdX2UKGgGaAloD0MIZED2eveBX8CUhpRSlGgVTS0BaBZHQG4wFNUOuq51fZQoaAZoCWgPQwgJbM7BM/tZwJSGlFKUaBVNLQFoFkdAbmrt78ejmHV9lChoBmgJaA9DCIz1DUxuLlPAlIaUUpRoFU0tAWgWR0Buckx7AtWddX2UKGgGaAloD0MI+mGE8MjGgcCUhpRSlGgVS+poFkdAbo6cDr7fpHV9lChoBmgJaA9DCCwujsrN/mDAlIaUUpRoFU0tAWgWR0BulqQ/5ckddX2UKGgGaAloD0MIBVH3Aai6g8CUhpRSlGgVS8VoFkdAbsDbC79Q43V9lChoBmgJaA9DCBAlWvJ4+VTAlIaUUpRoFU0tAWgWR0Bu2L6+FlCkdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 80, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc03a5f52d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc03a5f5360>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc03a5f53f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc03a5f5480>", "_build": "<function ActorCriticPolicy._build at 0x7fc03a5f5510>", "forward": "<function ActorCriticPolicy.forward at 0x7fc03a5f55a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc03a5f5630>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc03a5f56c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc03a5f5750>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc03a5f57e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc03a5f5870>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc03a5f5900>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc03a5f1680>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 65536, "_total_timesteps": 60000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681941780212283514, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAD5xI0P8C4I/IWNsQmKrv0G6r4tBnHYzQR7RQUEAAMhCAADIQgAAyEJRYgJDKhURPwAAyEIAAEhCAAAgQvM8aUIAAEhCAADIQgAAyELoC6xCqOwKQ+MvBz+a7KRCAABIQgAAIELYOBBCAAAgQgAAyEIAAMhC/K28QqjsCkPjLwc/muykQgAASEIAACBC2DgQQgAAIEIAAMhCAADIQvytvEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.09226666666666672, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfhmMEW0AucCUhpRSlIwBbJRLC4wBdJRHQGv3KoqCpWF1fZQoaAZoCWgPQwj5hVeSrDK6wJSGlFKUaBVLDGgWR0Br9yjJuEVWdX2UKGgGaAloD0MIda29T8WTusCUhpRSlGgVSxJoFkdAa/kE7nxJ/XV9lChoBmgJaA9DCEWeJF3D/rrAlIaUUpRoFUsHaBZHQGv5EQXhwVF1fZQoaAZoCWgPQwgV4SajKsy6wJSGlFKUaBVLDWgWR0Br+VQKrq+rdX2UKGgGaAloD0MI/G8lOz7zu8CUhpRSlGgVSw5oFkdAa/qFRHf/FXV9lChoBmgJaA9DCGYS9YJrM7rAlIaUUpRoFUsJaBZHQGv64REnb7F1fZQoaAZoCWgPQwhmEvWCazO6wJSGlFKUaBVLCWgWR0Br+xI6Kcd6dX2UKGgGaAloD0MIQUgWME1Ju8CUhpRSlGgVSwpoFkdAa/sVII4VAXV9lChoBmgJaA9DCGppboWsT7vAlIaUUpRoFUsIaBZHQGv8BHbypaR1fZQoaAZoCWgPQwiALESHFFC7wJSGlFKUaBVLB2gWR0Br/DN+so2GdX2UKGgGaAloD0MIIlFoWVv+usCUhpRSlGgVSwhoFkdAa/yNIbwSanV9lChoBmgJaA9DCKmG/Z6QoLvAlIaUUpRoFUsKaBZHQGv8+XzDn/11fZQoaAZoCWgPQwgOhGQBb1C7wJSGlFKUaBVLBmgWR0Br/TL2YfGNdX2UKGgGaAloD0MIeawZGVCfusCUhpRSlGgVSwhoFkdAa/25NGmUGHV9lChoBmgJaA9DCIAsRIcUULvAlIaUUpRoFUsHaBZHQGv+Q6hg3Lp1fZQoaAZoCWgPQwjyQc9mEY67wJSGlFKUaBVLDGgWR0Br/tLg4wRHdX2UKGgGaAloD0MIZhL1gmszusCUhpRSlGgVSwloFkdAa/9mL9/BnHV9lChoBmgJaA9DCNFZZhHCw7jAlIaUUpRoFUsNaBZHQGv/o91U2k11fZQoaAZoCWgPQwgiUWhZW/66wJSGlFKUaBVLCGgWR0Br/+FlCkXUdX2UKGgGaAloD0MIu2BwzWFPu8CUhpRSlGgVSwloFkdAbADO7g88tHV9lChoBmgJaA9DCKmG/Z6QoLvAlIaUUpRoFUsKaBZHQGwB4ao/A0t1fZQoaAZoCWgPQwioxHWMI6C7wJSGlFKUaBVLDGgWR0BsAhnnMdLhdX2UKGgGaAloD0MIrYVZaFu5usCUhpRSlGgVSw1oFkdAbAIbPyCnP3V9lChoBmgJaA9DCCJRaFlb/rrAlIaUUpRoFUsIaBZHQGwCSH2ys0Z1fZQoaAZoCWgPQwhqaW6FrE+7wJSGlFKUaBVLCGgWR0BsA1sYVIqcdX2UKGgGaAloD0MIIlFoWVv+usCUhpRSlGgVSwhoFkdAbAOO0b961XV9lChoBmgJaA9DCA0AVdzwu7nAlIaUUpRoFUsLaBZHQGwEHzYmLLp1fZQoaAZoCWgPQwhQbtv3ZN26wJSGlFKUaBVLCmgWR0BsBBxYJVsDdX2UKGgGaAloD0MIu2BwzWFPu8CUhpRSlGgVSwloFkdAbAU/WUbDM3V9lChoBmgJaA9DCLjJqDI08LrAlIaUUpRoFUsKaBZHQGwFRMnJDE51fZQoaAZoCWgPQwhmEvWCazO6wJSGlFKUaBVLCWgWR0BsBehCdBjXdX2UKGgGaAloD0MIzoqoiUZ7usCUhpRSlGgVSwtoFkdAbAZeVLSNO3V9lChoBmgJaA9DCIrJG2A2RrvAlIaUUpRoFUsKaBZHQGwHX5eqrBF1fZQoaAZoCWgPQwhFniRdw/66wJSGlFKUaBVLB2gWR0BsB2BOHnEEdX2UKGgGaAloD0MIrWhznE+EusCUhpRSlGgVSwtoFkdAbAeWAPNFB3V9lChoBmgJaA9DCCJRaFlb/rrAlIaUUpRoFUsIaBZHQGwH+eOGTLZ1fZQoaAZoCWgPQwhmEvWCazO6wJSGlFKUaBVLCWgWR0BsCP2wmmcfdX2UKGgGaAloD0MIZhL1gmszusCUhpRSlGgVSwloFkdAbAkyk9ECvHV9lChoBmgJaA9DCK4NFeMcALnAlIaUUpRoFUsMaBZHQGwJmQSzw+d1fZQoaAZoCWgPQwju68A54yK7wJSGlFKUaBVLC2gWR0BsCgSi/O+qdX2UKGgGaAloD0MIamluhaxPu8CUhpRSlGgVSwhoFkdAbAqmIj4YanV9lChoBmgJaA9DCGYS9YJrM7rAlIaUUpRoFUsJaBZHQGwLDvmYBvJ1fZQoaAZoCWgPQwgOhGQBb1C7wJSGlFKUaBVLBmgWR0BsC0mQbMoudX2UKGgGaAloD0MIIlFoWVv+usCUhpRSlGgVSwhoFkdAbAtMewLVnXV9lChoBmgJaA9DCO7rwDnjIrvAlIaUUpRoFUsLaBZHQGwMvQv6CUZ1fZQoaAZoCWgPQwi7YHDNYU+7wJSGlFKUaBVLCWgWR0BsDPkmx+rmdX2UKGgGaAloD0MIrWhznE+EusCUhpRSlGgVSwtoFkdAbA0okRjBmHV9lChoBmgJaA9DCDYDXJAhw7rAlIaUUpRoFUsNaBZHQGwNwNLDhtN1fZQoaAZoCWgPQwhmEvWCazO6wJSGlFKUaBVLCWgWR0BsDrmdRR/FdX2UKGgGaAloD0MINGd9yoWqusCUhpRSlGgVSwloFkdAbA7nTRYzSHV9lChoBmgJaA9DCEUNpmGAcbrAlIaUUpRoFUsLaBZHQGwO6hYeT3Z1fZQoaAZoCWgPQwiALESHFFC7wJSGlFKUaBVLB2gWR0BsDyQA+6iCdX2UKGgGaAloD0MIZhL1gmszusCUhpRSlGgVSwloFkdAbBBqhUR3/3V9lChoBmgJaA9DCLtgcM1hT7vAlIaUUpRoFUsJaBZHQGwQliKBNEh1fZQoaAZoCWgPQwiKyRtgNka7wJSGlFKUaBVLCmgWR0BsEMuvllshdX2UKGgGaAloD0MIeLMG789nusCUhpRSlGgVSwtoFkdAbBEsOG0u2HV9lChoBmgJaA9DCA6EZAFvULvAlIaUUpRoFUsGaBZHQGwRkxqO9391fZQoaAZoCWgPQwhFniRdw/66wJSGlFKUaBVLB2gWR0BsEhg7YChfdX2UKGgGaAloD0MIIlFoWVv+usCUhpRSlGgVSwhoFkdAbBLgNwzch3V9lChoBmgJaA9DCA6EZAFvULvAlIaUUpRoFUsGaBZHQGwTG16Vt411fZQoaAZoCWgPQwgOhGQBb1C7wJSGlFKUaBVLBmgWR0BsE4H7gsK9dX2UKGgGaAloD0MIu2BwzWFPu8CUhpRSlGgVSwloFkdAbBSsXizcAXV9lChoBmgJaA9DCHmsGRlQn7rAlIaUUpRoFUsIaBZHQGwVJng5zYF1fZQoaAZoCWgPQwhgcw6eZZC7wJSGlFKUaBVLC2gWR0BsFVhZyMkydX2UKGgGaAloD0MIQdXo1YT5ucCUhpRSlGgVSw9oFkdAbBXnf2saKnV9lChoBmgJaA9DCNRIS+VxDrrAlIaUUpRoFUsJaBZHQGwW1OTJQtV1fZQoaAZoCWgPQwjOiqiJRnu6wJSGlFKUaBVLC2gWR0BsFtSEUTL4dX2UKGgGaAloD0MI+n3/5kWgu8CUhpRSlGgVSwtoFkdAbBdi1AqusHV9lChoBmgJaA9DCMVx4NUeULrAlIaUUpRoFUsIaBZHQGwYUIC2c8V1fZQoaAZoCWgPQwitTWN7EQO5wJSGlFKUaBVLDWgWR0BsGFNahYeUdX2UKGgGaAloD0MIZhL1gmszusCUhpRSlGgVSwloFkdAbBiQkHD77HV9lChoBmgJaA9DCDI89rMwvLnAlIaUUpRoFUsKaBZHQGwZRywOe8R1fZQoaAZoCWgPQwh5rBkZUJ+6wJSGlFKUaBVLCGgWR0BsGpSJj2BbdX2UKGgGaAloD0MIpn7eVBD+usCUhpRSlGgVSwloFkdAbBr9S/CZW3V9lChoBmgJaA9DCPjii/YcMrvAlIaUUpRoFUsMaBZHQGwbVzySV4Z1fZQoaAZoCWgPQwi7YHDNYU+7wJSGlFKUaBVLCWgWR0BsG7qSowVTdX2UKGgGaAloD0MIu2BwzWFPu8CUhpRSlGgVSwloFkdAbBxObAk9lnV9lChoBmgJaA9DCLtgcM1hT7vAlIaUUpRoFUsJaBZHQGwcu5z5oGp1fZQoaAZoCWgPQwj6ff/mRaC7wJSGlFKUaBVLC2gWR0BsHZGKAJ9idX2UKGgGaAloD0MIiskbYDZGu8CUhpRSlGgVSwpoFkdAbB3VtGd7OXV9lChoBmgJaA9DCLjJqDI08LrAlIaUUpRoFUsKaBZHQGweuz6ab4J1fZQoaAZoCWgPQwhBZJEmBi+7wJSGlFKUaBVLDGgWR0BsILNKRMewdX2UKGgGaAloD0MIDoRkAW9Qu8CUhpRSlGgVSwZoFkdAbCFnrY5DJHV9lChoBmgJaA9DCLAbti0mM7rAlIaUUpRoFUsKaBZHQGwhu7QLNOd1fZQoaAZoCWgPQwjOiqiJRnu6wJSGlFKUaBVLC2gWR0BsIc3XI2fkdX2UKGgGaAloD0MIIlFoWVv+usCUhpRSlGgVSwhoFkdAbCM1+iJwbXV9lChoBmgJaA9DCLtgcM1hT7vAlIaUUpRoFUsJaBZHQGwk3gk1Muh1fZQoaAZoCWgPQwgeboeGHU+7wJSGlFKUaBVLCmgWR0BsJWI9C/oJdX2UKGgGaAloD0MIpBmLpn8wu8CUhpRSlGgVSwxoFkdAbCYv+OwPiHV9lChoBmgJaA9DCPDce7h08bvAlIaUUpRoFUsMaBZHQGwnX3xnWat1fZQoaAZoCWgPQwhFniRdw/66wJSGlFKUaBVLB2gWR0BsJ2M+/xlQdX2UKGgGaAloD0MIRZ4kXcP+usCUhpRSlGgVSwdoFkdAbCfQzDXOGHV9lChoBmgJaA9DCFCpEmXzSrnAlIaUUpRoFUsMaBZHQGwoCIDYAbR1fZQoaAZoCWgPQwh5rBkZUJ+6wJSGlFKUaBVLCGgWR0BsKQHxBmf5dX2UKGgGaAloD0MIIlFoWVv+usCUhpRSlGgVSwhoFkdAbCkDxLCemXV9lChoBmgJaA9DCA6EZAFvULvAlIaUUpRoFUsGaBZHQGwp7iIcinp1fZQoaAZoCWgPQwjlettMwUG8wJSGlFKUaBVLD2gWR0BsK6EDhcZ+dX2UKGgGaAloD0MIIlFoWVv+usCUhpRSlGgVSwhoFkdAbCujhUBGQXV9lChoBmgJaA9DCGmn5nI/T7vAlIaUUpRoFUsKaBZHQGwr3gDRtxd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 80, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -96.
|
|
|
1 |
+
{"mean_reward": -96.43679450988773, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T15:07:08.080460"}
|