Upload model to Hugging Face
Browse files- BC-no-theta.zip +2 -2
- BC-no-theta/data +17 -17
- BC-no-theta/policy.optimizer.pth +1 -1
- BC-no-theta/policy.pth +1 -1
- config.json +1 -1
- results.json +1 -1
BC-no-theta.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4a3ed2b364f5eccb69e60a6bf8d12c8f1cf9561c37afc2f75668cde4d89cf8d
|
3 |
+
size 44150
|
BC-no-theta/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
@@ -48,7 +48,7 @@
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,11 +57,11 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
-
":serialized:": "
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
@@ -70,7 +70,7 @@
|
|
70 |
"_current_progress_remaining": -0.02400000000000002,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f40ffae9240>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f40ffae92d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f40ffae9360>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f40ffae93f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f40ffae9480>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f40ffae9510>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f40ffae95a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f40ffae9630>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f40ffae96c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f40ffae9750>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f40ffae97e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f40ffae9870>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f40ffad6400>"
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1681955729493721556,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAJEh9EJ8OL8/rOIyQgAAIEIBKoZCAABwQgAAyEIAAMhCASqGQgAAyEKRIfRCS8TiPXL7fEIAAMhCrOIyQprsJEIWaFdCfU9zQgAAyEIAAMhCkSH0QpIKGD8AAMhCAABIQgAAIELYOJBCAABwQgAAyEIAAMhC2DiQQpEh9EJEUB/AAABwQgAAyEIAAMhC2DiQQgAAyEIAAEhCAAAgQtg4kEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
|
|
70 |
"_current_progress_remaining": -0.02400000000000002,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgzXOpiMAD8CUhpRSlIwBbJRNLQGMAXSUR0CCwLfZ26kJdX2UKGgGaAloD0MID4C4q1dpIECUhpRSlGgVTS0BaBZHQILDKDkELYx1fZQoaAZoCWgPQwhl5CzsaUM5QJSGlFKUaBVNLQFoFkdAgsTRWLgn+nV9lChoBmgJaA9DCElKehhav0RAlIaUUpRoFU0tAWgWR0CCxVd8iOebdX2UKGgGaAloD0MIJPJdSl0ePECUhpRSlGgVTS0BaBZHQILViews5GV1fZQoaAZoCWgPQwg1071O6svWP5SGlFKUaBVNLQFoFkdAgte3AuZkTnV9lChoBmgJaA9DCG6/fLJiaBjAlIaUUpRoFU0tAWgWR0CC2dT8YQ8PdX2UKGgGaAloD0MIqRJlbykXHsCUhpRSlGgVTS0BaBZHQILaUNe+mFd1fZQoaAZoCWgPQwhu2ozTEKUgQJSGlFKUaBVNLQFoFkdAgumM85jpcHV9lChoBmgJaA9DCNKm6h7ZXP6/lIaUUpRoFU0tAWgWR0CC62szVMEidX2UKGgGaAloD0MImdh8XBt6HcCUhpRSlGgVTS0BaBZHQILsplxwQ191fZQoaAZoCWgPQwhVMgBUceMcwJSGlFKUaBVNLQFoFkdAguzu4gA6uHV9lChoBmgJaA9DCIMXfQVpVh7AlIaUUpRoFU0tAWgWR0CC+fzJZGKAdX2UKGgGaAloD0MIkUWaeAf4DsCUhpRSlGgVTS0BaBZHQIL7xp35eqt1fZQoaAZoCWgPQwgVjiCVYqcCQJSGlFKUaBVNLQFoFkdAgv3EpI+W4XV9lChoBmgJaA9DCPWc9L7xtcu/lIaUUpRoFU0tAWgWR0CC/kkSElE7dX2UKGgGaAloD0MIkUWaeAf4DsCUhpRSlGgVTS0BaBZHQINDDJGOMl11fZQoaAZoCWgPQwjoFU890lAbQJSGlFKUaBVNLQFoFkdAg0UrLhaTwHV9lChoBmgJaA9DCEONQpJZPRrAlIaUUpRoFU0tAWgWR0CDRrO5avA5dX2UKGgGaAloD0MIknTN5JtZMkCUhpRSlGgVTS0BaBZHQINHQow22oh1fZQoaAZoCWgPQwhFZ5lFKFYawJSGlFKUaBVNLQFoFkdAg1g5ssQNC3V9lChoBmgJaA9DCEFEatrFFBjAlIaUUpRoFU0tAWgWR0CDWoay8jA0dX2UKGgGaAloD0MI2XiwxW7fDsCUhpRSlGgVTS0BaBZHQINbqvV3EAJ1fZQoaAZoCWgPQwgqj26ERQUOwJSGlFKUaBVNLQFoFkdAg1v72USqVHV9lChoBmgJaA9DCPFJJxJMdTlAlIaUUpRoFU0tAWgWR0CDapelbeMydX2UKGgGaAloD0MIHCPZI9TUIECUhpRSlGgVTS0BaBZHQINteza9K291fZQoaAZoCWgPQwhmho2yfrlEQJSGlFKUaBVNLQFoFkdAg2/k61b7j3V9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CDcHm9xp+MdX2UKGgGaAloD0MIdlJflnZ/WECUhpRSlGgVTS0BaBZHQIOFOalUIcB1fZQoaAZoCWgPQwik4v+OqJA2QJSGlFKUaBVNLQFoFkdAg4dtXYDkl3V9lChoBmgJaA9DCETcnEoGsBrAlIaUUpRoFU0tAWgWR0CDihCPZIxydX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQIOKpQYUFjd1fZQoaAZoCWgPQwi1wYno12pDQJSGlFKUaBVNLQFoFkdAg54rsa86FXV9lChoBmgJaA9DCKlOB7KeOhzAlIaUUpRoFU0tAWgWR0CDoO4rjHXFdX2UKGgGaAloD0MIic4yi1DMBUCUhpRSlGgVTS0BaBZHQIOjdAxBVuJ1fZQoaAZoCWgPQwjjNhrAW6gzQJSGlFKUaBVNLQFoFkdAg6RDvd/KAHV9lChoBmgJaA9DCGjqdYvAYDlAlIaUUpRoFU0tAWgWR0CDufq/M4cWdX2UKGgGaAloD0MI2qm53GCoG8CUhpRSlGgVTS0BaBZHQIO9EjJMg2Z1fZQoaAZoCWgPQwj4HFiOkOECwJSGlFKUaBVNLQFoFkdAg7/NBWxQi3V9lChoBmgJaA9DCHZwsDcxFBXAlIaUUpRoFU0tAWgWR0CDwM2606YFdX2UKGgGaAloD0MII4eIm1PZOUCUhpRSlGgVTS0BaBZHQIPU6mwaBI51fZQoaAZoCWgPQwjnGmZoPEEawJSGlFKUaBVNLQFoFkdAg9bFCswL3XV9lChoBmgJaA9DCP7tsl93+g7AlIaUUpRoFU0tAWgWR0CD2KkxASnMdX2UKGgGaAloD0MIyvrNxHShHMCUhpRSlGgVTS0BaBZHQIPZEpw0fo11fZQoaAZoCWgPQwinJVZGI68cwJSGlFKUaBVNLQFoFkdAhBqVs+FDfHV9lChoBmgJaA9DCEAyHTo9zw7AlIaUUpRoFU0tAWgWR0CEHBxnWattdX2UKGgGaAloD0MI/1vJjo3QHMCUhpRSlGgVTS0BaBZHQIQdW1KGtZF1fZQoaAZoCWgPQwh7Eticgy5VQJSGlFKUaBVNLQFoFkdAhB2v5pJwsHV9lChoBmgJaA9DCGppboWwBEBAlIaUUpRoFU0tAWgWR0CELdXYlIEsdX2UKGgGaAloD0MI3GgAb4FcIUCUhpRSlGgVTS0BaBZHQIQv86ij+Jh1fZQoaAZoCWgPQwjOFhBaD28awJSGlFKUaBVNLQFoFkdAhDGqjBVMmHV9lChoBmgJaA9DCDcz+tFwygXAlIaUUpRoFU0tAWgWR0CEMgxWT5fudX2UKGgGaAloD0MIfeiC+pbpI0CUhpRSlGgVTS0BaBZHQIRCvY6GQCF1fZQoaAZoCWgPQwgqqRPQRJgnQJSGlFKUaBVNLQFoFkdAhESh9LHuJHV9lChoBmgJaA9DCGechqjC/UxAlIaUUpRoFU0tAWgWR0CERevRJEpidX2UKGgGaAloD0MIcjPcgM9zMUCUhpRSlGgVTS0BaBZHQIRGgGbCrLh1fZQoaAZoCWgPQwgDJJpAEQsXwJSGlFKUaBVNLQFoFkdAhFHyRbKRuHV9lChoBmgJaA9DCH1cGyrG+RjAlIaUUpRoFU0tAWgWR0CEVDBKL877dX2UKGgGaAloD0MIysLX17qoRECUhpRSlGgVTS0BaBZHQIRVho9LYf51fZQoaAZoCWgPQwhRn+QOm1gewJSGlFKUaBVNLQFoFkdAhFXkhib2DnV9lChoBmgJaA9DCHZUNUHUDRnAlIaUUpRoFU0tAWgWR0CEZ25QxesxdX2UKGgGaAloD0MIv5zZrtDnDsCUhpRSlGgVTS0BaBZHQIRqiQxN7Bx1fZQoaAZoCWgPQwjF506w/1oIwJSGlFKUaBVNLQFoFkdAhGy9Sde6Z3V9lChoBmgJaA9DCFmIDoEjc05AlIaUUpRoFU0tAWgWR0CEbRliBoVVdX2UKGgGaAloD0MIWikEconjHcCUhpRSlGgVTS0BaBZHQIR/d2NedCp1fZQoaAZoCWgPQwiPboRFRfwOwJSGlFKUaBVNLQFoFkdAhIJcujASF3V9lChoBmgJaA9DCLaA0Hr4whzAlIaUUpRoFU0tAWgWR0CEhOXnhbW3dX2UKGgGaAloD0MIw7tcxHci87+UhpRSlGgVTS0BaBZHQISFrS1E3Kl1fZQoaAZoCWgPQwgI46dxbx4NwJSGlFKUaBVNLQFoFkdAhJ28KgIyCXV9lChoBmgJaA9DCMnnFU89MiBAlIaUUpRoFU0tAWgWR0CEoUe+VTrFdX2UKGgGaAloD0MI5q4l5IOe5b+UhpRSlGgVTS0BaBZHQISj0oKD0191fZQoaAZoCWgPQwiGHcakvyVEQJSGlFKUaBVNLQFoFkdAhKR0mD15B3V9lChoBmgJaA9DCF35LM+DOxLAlIaUUpRoFU0tAWgWR0CE+gTufEn9dX2UKGgGaAloD0MIuVD513KwfsCUhpRSlGgVS/VoFkdAhPr2UjcEeXV9lChoBmgJaA9DCJ25h4TvDSdAlIaUUpRoFU0tAWgWR0CE/OnVG0/odX2UKGgGaAloD0MIsVOsGoSJF8CUhpRSlGgVTS0BaBZHQIT+/TLGJep1fZQoaAZoCWgPQwj0jH3JxoMewJSGlFKUaBVNLQFoFkdAhRF0fYBeX3V9lChoBmgJaA9DCBDPEmQE9A7AlIaUUpRoFU0tAWgWR0CFEl+kxh2GdX2UKGgGaAloD0MIVBoxs89zHcCUhpRSlGgVTS0BaBZHQIUUuEPDpC91fZQoaAZoCWgPQwi6v3rct/oOwJSGlFKUaBVNLQFoFkdAhRbU29+PR3V9lChoBmgJaA9DCGdkkLsI0w7AlIaUUpRoFU0tAWgWR0CFKit+TeO5dX2UKGgGaAloD0MIOlyrPew1EsCUhpRSlGgVTS0BaBZHQIUqlH+ZPVN1fZQoaAZoCWgPQwhh+8kYH2YKQJSGlFKUaBVNLQFoFkdAhSwh+4LCvXV9lChoBmgJaA9DCBU5RNycSvG/lIaUUpRoFU0tAWgWR0CFLhyhBZ6ldX2UKGgGaAloD0MIkUWaeAf4DsCUhpRSlGgVTS0BaBZHQIVBrYoRZlp1fZQoaAZoCWgPQwi5jJsaaL4cwJSGlFKUaBVNLQFoFkdAhUJAZsKsuHV9lChoBmgJaA9DCIQtdvus0g7AlIaUUpRoFU0tAWgWR0CFRFvGZNO/dX2UKGgGaAloD0MIF2TL8nWZ4r+UhpRSlGgVTS0BaBZHQIVGwWac7Qt1fZQoaAZoCWgPQwjVIMztXq4IwJSGlFKUaBVNLQFoFkdAhVu6rNnoPnV9lChoBmgJaA9DCJELzuDvNw1AlIaUUpRoFU0tAWgWR0CFXHg/C66KdX2UKGgGaAloD0MISfQyiuWmHcCUhpRSlGgVTS0BaBZHQIVeaPKdQO51fZQoaAZoCWgPQwgK9fQR+AMewJSGlFKUaBVNLQFoFkdAhWDivHLidnV9lChoBmgJaA9DCL+c2a7Q5w7AlIaUUpRoFU0tAWgWR0CFczcE/0NCdX2UKGgGaAloD0MI12g50EPtHcCUhpRSlGgVTS0BaBZHQIVz/KU3XI51fZQoaAZoCWgPQwiDFhIwupA5QJSGlFKUaBVNLQFoFkdAhXV1qnFYMnV9lChoBmgJaA9DCBaJCWr46jhAlIaUUpRoFU0tAWgWR0CFdxO45Lh8dX2UKGgGaAloD0MIZRwj2SNUHcCUhpRSlGgVTS0BaBZHQIWKtkhA4XJ1fZQoaAZoCWgPQwhA+FCiJU8YwJSGlFKUaBVNLQFoFkdAhYuV5KODJ3V9lChoBmgJaA9DCNqpudxgCB7AlIaUUpRoFU0tAWgWR0CFjU6ij+JhdX2UKGgGaAloD0MITFEujV9YHsCUhpRSlGgVTS0BaBZHQIWPQePq9oN1ZS4="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
BC-no-theta/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 18973
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a703c14bb26c94b0c63595c9482784395f770b2f47519e04db64225586b8be41
|
3 |
size 18973
|
BC-no-theta/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 9295
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c8be144e5a935e73928ddbd675ab1085a7654a1cbb9e1707876fef5b1692de2
|
3 |
size 9295
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd99a4f1240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd99a4f12d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd99a4f1360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd99a4f13f0>", "_build": "<function ActorCriticPolicy._build at 0x7fd99a4f1480>", "forward": "<function ActorCriticPolicy.forward at 0x7fd99a4f1510>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd99a4f15a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd99a4f1630>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd99a4f16c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd99a4f1750>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd99a4f17e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd99a4f1870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd99a4dee40>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 204800, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681947718852793842, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAJEh9EKJWBw/AADIQgAASEIAACBC2DiQQgAAcEIAAMhCAADIQtg4kEKsUwNDccDRPuaJp0Kx0JNCoMuDQis/MkIAAMhCAADIQgAAyEJSP71CkSH0Qnw4vz+s4jJCAAAgQgEqhkIAAHBCAADIQgAAyEIBKoZCAADIQqCV50Ks0/E+hZOBQjH2i0LopXNC/mdzQpr9YEIAAMhCAADIQiyFl0KUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIa5+Oxwy0BkCUhpRSlIwBbJRNLQGMAXSUR0CF+ETufEn9dX2UKGgGaAloD0MIfHxCdt7OKkCUhpRSlGgVTS0BaBZHQIX+bronrpt1fZQoaAZoCWgPQwghj+BGylYEwJSGlFKUaBVNLQFoFkdAhf7pHI6sAHV9lChoBmgJaA9DCOcaZmg80ShAlIaUUpRoFU0tAWgWR0CGAEv+OwPidX2UKGgGaAloD0MIbR6HwfyNMkCUhpRSlGgVTS0BaBZHQIYTQ+pwS8J1fZQoaAZoCWgPQwgxJCcTt5xBQJSGlFKUaBVNLQFoFkdAhhoUrTYukHV9lChoBmgJaA9DCIC77Ned2jZAlIaUUpRoFU0tAWgWR0CGGsOcUdq+dX2UKGgGaAloD0MI4q/JGvX3U0CUhpRSlGgVTS0BaBZHQIYcFjwx33Z1fZQoaAZoCWgPQwgN4gM7PvN+wJSGlFKUaBVLtWgWR0CGKuovSMLndX2UKGgGaAloD0MIZr/udOfpHkCUhpRSlGgVTS0BaBZHQIYvcl/pdKN1fZQoaAZoCWgPQwgmVdtN8A0CQJSGlFKUaBVNLQFoFkdAhjahacI7eXV9lChoBmgJaA9DCJMehlYnGURAlIaUUpRoFU0tAWgWR0CGN82LpA2RdX2UKGgGaAloD0MIAtaqXRMyHsCUhpRSlGgVTS0BaBZHQIZCaH9FWn11fZQoaAZoCWgPQwgdrWpJR7nzv5SGlFKUaBVNLQFoFkdAhkZfvOQhfXV9lChoBmgJaA9DCKM9XkiHZGZAlIaUUpRoFU0tAWgWR0CGTERjjJdTdX2UKGgGaAloD0MIcctHUtJjXUCUhpRSlGgVTS0BaBZHQIZNTTjNpud1fZQoaAZoCWgPQwhpHsAiv4BQQJSGlFKUaBVNLQFoFkdAhqmvNeMQ3HV9lChoBmgJaA9DCGu3XWiuWyNAlIaUUpRoFU0tAWgWR0CGrZ0Zm7J5dX2UKGgGaAloD0MIpkOn591NWUCUhpRSlGgVTS0BaBZHQIaylCHARCh1fZQoaAZoCWgPQwgDmDJwQKscwJSGlFKUaBVNLQFoFkdAhrOSbx3FDXV9lChoBmgJaA9DCDlf7L34Qh3AlIaUUpRoFU0tAWgWR0CGwAG0u14PdX2UKGgGaAloD0MIejTVk/m9S0CUhpRSlGgVTS0BaBZHQIbD+KCQLeB1fZQoaAZoCWgPQwjlCu9yEYBUQJSGlFKUaBVNLQFoFkdAhst5oGpuM3V9lChoBmgJaA9DCFad1QJ7jBLAlIaUUpRoFU0tAWgWR0CGzKomXw9adX2UKGgGaAloD0MIHERrRZtrMUCUhpRSlGgVTS0BaBZHQIbdh3xFy7x1fZQoaAZoCWgPQwi1G33Mh1ZiQJSGlFKUaBVNLQFoFkdAhuHoLofSyHV9lChoBmgJaA9DCEuUvaWcWUdAlIaUUpRoFU0tAWgWR0CG6m4aP0ZndX2UKGgGaAloD0MI7gT7r3OdTUCUhpRSlGgVTS0BaBZHQIbrpLVWjoJ1fZQoaAZoCWgPQwiySBPvAE/bP5SGlFKUaBVNLQFoFkdAhvzHSF49o3V9lChoBmgJaA9DCH8yxofZEmFAlIaUUpRoFU0tAWgWR0CHAXmZmZmadX2UKGgGaAloD0MIQNr/AGsVAkCUhpRSlGgVTS0BaBZHQIcKMajvd/J1fZQoaAZoCWgPQwj3rGu0HOjiv5SGlFKUaBVNLQFoFkdAhwvat9x6wHV9lChoBmgJaA9DCFgepKfIVl1AlIaUUpRoFU0tAWgWR0CHGvtnf2sadX2UKGgGaAloD0MIbt+j/npnQ0CUhpRSlGgVTS0BaBZHQIcf+XHBDXx1fZQoaAZoCWgPQwjVeOkmMeRKQJSGlFKUaBVNLQFoFkdAhydB3aBZp3V9lChoBmgJaA9DCMoXtJCAkfA/lIaUUpRoFU0tAWgWR0CHKD6/IsAedX2UKGgGaAloD0MIms3jMJjPHMCUhpRSlGgVTS0BaBZHQIc0BYFJQLx1fZQoaAZoCWgPQwgyObUzTL0ewJSGlFKUaBVNLQFoFkdAhzl2vjfelHV9lChoBmgJaA9DCHWRQln4Og5AlIaUUpRoFU0tAWgWR0CHQ6tWdVebdX2UKGgGaAloD0MIdxTnqKMDA0CUhpRSlGgVTS0BaBZHQIdFl6/qPfd1fZQoaAZoCWgPQwi5iVqaW4EmQJSGlFKUaBVNLQFoFkdAh1bzo2XLNnV9lChoBmgJaA9DCHEEqRQ7GuI/lIaUUpRoFU0tAWgWR0CHXBulXRw7dX2UKGgGaAloD0MI10tTBDh9A8CUhpRSlGgVTS0BaBZHQIdlx8neBQN1fZQoaAZoCWgPQwjQ8jy4u3tjQJSGlFKUaBVNLQFoFkdAh6tSzPa+OHV9lChoBmgJaA9DCK2JBb6iyxvAlIaUUpRoFU0tAWgWR0CHvaQEIPbxdX2UKGgGaAloD0MIwaikTkBTHsCUhpRSlGgVTS0BaBZHQIfC6Lfk3jx1fZQoaAZoCWgPQwgbuW5Keck8QJSGlFKUaBVNLQFoFkdAh80aiblRxnV9lChoBmgJaA9DCFCJ6xhXHApAlIaUUpRoFU0tAWgWR0CHzvWLgn+idX2UKGgGaAloD0MIFoczv5p3NECUhpRSlGgVTS0BaBZHQIfh2OS4e911fZQoaAZoCWgPQwiSJAhXQDk3QJSGlFKUaBVNLQFoFkdAh+cjMvAXVXV9lChoBmgJaA9DCGDMlqyKf3zAlIaUUpRoFUtwaBZHQIfu0Uh3aBZ1fZQoaAZoCWgPQwgkCi3r/oEjQJSGlFKUaBVNLQFoFkdAh/DPbwjMV3V9lChoBmgJaA9DCEyqtpvgWxnAlIaUUpRoFU0tAWgWR0CH8pYRNATqdX2UKGgGaAloD0MIMPKyJtZOfsCUhpRSlGgVS8FoFkdAiAcAVwgkknV9lChoBmgJaA9DCGw/GePD915AlIaUUpRoFU0tAWgWR0CICgzzErGzdX2UKGgGaAloD0MIrMd9q3Vi4D+UhpRSlGgVTS0BaBZHQIgQ5Kg7HQ11fZQoaAZoCWgPQwid19glqgccwJSGlFKUaBVNLQFoFkdAiBKsSTQmeHV9lChoBmgJaA9DCM8xIHt9GH/AlIaUUpRoFUvDaBZHQIga/gk1Muh1fZQoaAZoCWgPQwg+CAH5EjoewJSGlFKUaBVNLQFoFkdAiCF9pqREGHV9lChoBmgJaA9DCJfmVgir1XzAlIaUUpRoFUu/aBZHQIgis9nscAB1fZQoaAZoCWgPQwghPUUOETcNQJSGlFKUaBVNLQFoFkdAiCoAG8mKInV9lChoBmgJaA9DCA5KmGn70lxAlIaUUpRoFU0tAWgWR0CIN1kQwsXjdX2UKGgGaAloD0MIjniymxlmUECUhpRSlGgVTS0BaBZHQIg/9w3o9s91fZQoaAZoCWgPQwgrNBDLZk71P5SGlFKUaBVNLQFoFkdAiEEILG7z1HV9lChoBmgJaA9DCH4eozzzyjFAlIaUUpRoFU0tAWgWR0CISL0pVjqfdX2UKGgGaAloD0MI0zO9xNhafcCUhpRSlGgVS/loFkdAiFBNfoicG3V9lChoBmgJaA9DCD+QvHMoyztAlIaUUpRoFU0tAWgWR0CIXevgWJrMdX2UKGgGaAloD0MIV5i+1xC8A0CUhpRSlGgVTS0BaBZHQIhfUjopx3p1fZQoaAZoCWgPQwh9lXzsbsZ+wJSGlFKUaBVL9mgWR0CIYosOG0u2dX2UKGgGaAloD0MI3lflQuWVRUCUhpRSlGgVTS0BaBZHQIhveM2m52B1fZQoaAZoCWgPQwhtGttrQe/fP5SGlFKUaBVNLQFoFkdAiH44Tj/+9HV9lChoBmgJaA9DCLeyRGeZhfw/lIaUUpRoFU0tAWgWR0CIf8eeWfK7dX2UKGgGaAloD0MIEjElkujlBUCUhpRSlGgVTS0BaBZHQIiCsv9LpRp1fZQoaAZoCWgPQwgBTBk4oM0rQJSGlFKUaBVNLQFoFkdAiNl6t9x6wHV9lChoBmgJaA9DCCrj32dccDFAlIaUUpRoFU0tAWgWR0CI5tbfP5YYdX2UKGgGaAloD0MIxawXQznlPkCUhpRSlGgVTS0BaBZHQIjoKU5dWyV1fZQoaAZoCWgPQwg/kSdJ11QzQJSGlFKUaBVNLQFoFkdAiOsU1Q66rnV9lChoBmgJaA9DCOpae5+qCGBAlIaUUpRoFU0tAWgWR0CI+NF1jiGWdX2UKGgGaAloD0MIMWE0K9vDVUCUhpRSlGgVTS0BaBZHQIkDo1xbSql1fZQoaAZoCWgPQwhzgGCOHtBaQJSGlFKUaBVNLQFoFkdAiQSlqBVdX3V9lChoBmgJaA9DCHR5c7hWczZAlIaUUpRoFU0tAWgWR0CJB8sySFGodX2UKGgGaAloD0MI6Q33kdtxY0CUhpRSlGgVTS0BaBZHQIkTJFd9lVd1fZQoaAZoCWgPQwiY9zjThCN5wJSGlFKUaBVL6WgWR0CJG48/UvwmdX2UKGgGaAloD0MImN9pMuMtGkCUhpRSlGgVTS0BaBZHQIkivVf/m1Z1fZQoaAZoCWgPQwgo7+NojhwXwJSGlFKUaBVNLQFoFkdAiSgU0WM0g3V9lChoBmgJaA9DCBrCMcuelVxAlIaUUpRoFU0tAWgWR0CJOCyBTXJ6dX2UKGgGaAloD0MIeEXwv5UkJUCUhpRSlGgVTS0BaBZHQIlAZavA44p1fZQoaAZoCWgPQwgNqg1ORB8IwJSGlFKUaBVNLQFoFkdAiUZ2rXDm83V9lChoBmgJaA9DCGsqi8IuJjZAlIaUUpRoFU0tAWgWR0CJSuh/RVp9dX2UKGgGaAloD0MIyH2rdeLiHMCUhpRSlGgVTS0BaBZHQIlZGWv8qF11fZQoaAZoCWgPQwhffqfJjLcZwJSGlFKUaBVNLQFoFkdAiWD+RoysS3V9lChoBmgJaA9DCAQg7upVE1NAlIaUUpRoFU0tAWgWR0CJZxkBCD28dX2UKGgGaAloD0MI3A94YADxHMCUhpRSlGgVTS0BaBZHQIlrA5tFa0R1fZQoaAZoCWgPQwi7050nnp5WQJSGlFKUaBVNLQFoFkdAiXc2WQfZEnV9lChoBmgJaA9DCJFgqpm1gDVAlIaUUpRoFU0tAWgWR0CJe86XBxgidX2UKGgGaAloD0MIiC09murJ8T+UhpRSlGgVTS0BaBZHQImAq7mMfih1fZQoaAZoCWgPQwjylUBKbGJiQJSGlFKUaBVNLQFoFkdAiYQz8P4EfXV9lChoBmgJaA9DCJXx7zMuHMY/lIaUUpRoFU0tAWgWR0CJjvlQuVX4dX2UKGgGaAloD0MIwVPIlXomEcCUhpRSlGgVTS0BaBZHQImXNGI9C/p1fZQoaAZoCWgPQwgEx2Xc1NAcwJSGlFKUaBVNLQFoFkdAiZ1GaH9FWnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f40ffae9240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f40ffae92d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f40ffae9360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f40ffae93f0>", "_build": "<function ActorCriticPolicy._build at 0x7f40ffae9480>", "forward": "<function ActorCriticPolicy.forward at 0x7f40ffae9510>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f40ffae95a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f40ffae9630>", "_predict": "<function ActorCriticPolicy._predict at 0x7f40ffae96c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f40ffae9750>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f40ffae97e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f40ffae9870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f40ffad6400>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 204800, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681955729493721556, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAJEh9EJ8OL8/rOIyQgAAIEIBKoZCAABwQgAAyEIAAMhCASqGQgAAyEKRIfRCS8TiPXL7fEIAAMhCrOIyQprsJEIWaFdCfU9zQgAAyEIAAMhCkSH0QpIKGD8AAMhCAABIQgAAIELYOJBCAABwQgAAyEIAAMhC2DiQQpEh9EJEUB/AAABwQgAAyEIAAMhC2DiQQgAAyEIAAEhCAAAgQtg4kEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgzXOpiMAD8CUhpRSlIwBbJRNLQGMAXSUR0CCwLfZ26kJdX2UKGgGaAloD0MID4C4q1dpIECUhpRSlGgVTS0BaBZHQILDKDkELYx1fZQoaAZoCWgPQwhl5CzsaUM5QJSGlFKUaBVNLQFoFkdAgsTRWLgn+nV9lChoBmgJaA9DCElKehhav0RAlIaUUpRoFU0tAWgWR0CCxVd8iOebdX2UKGgGaAloD0MIJPJdSl0ePECUhpRSlGgVTS0BaBZHQILViews5GV1fZQoaAZoCWgPQwg1071O6svWP5SGlFKUaBVNLQFoFkdAgte3AuZkTnV9lChoBmgJaA9DCG6/fLJiaBjAlIaUUpRoFU0tAWgWR0CC2dT8YQ8PdX2UKGgGaAloD0MIqRJlbykXHsCUhpRSlGgVTS0BaBZHQILaUNe+mFd1fZQoaAZoCWgPQwhu2ozTEKUgQJSGlFKUaBVNLQFoFkdAgumM85jpcHV9lChoBmgJaA9DCNKm6h7ZXP6/lIaUUpRoFU0tAWgWR0CC62szVMEidX2UKGgGaAloD0MImdh8XBt6HcCUhpRSlGgVTS0BaBZHQILsplxwQ191fZQoaAZoCWgPQwhVMgBUceMcwJSGlFKUaBVNLQFoFkdAguzu4gA6uHV9lChoBmgJaA9DCIMXfQVpVh7AlIaUUpRoFU0tAWgWR0CC+fzJZGKAdX2UKGgGaAloD0MIkUWaeAf4DsCUhpRSlGgVTS0BaBZHQIL7xp35eqt1fZQoaAZoCWgPQwgVjiCVYqcCQJSGlFKUaBVNLQFoFkdAgv3EpI+W4XV9lChoBmgJaA9DCPWc9L7xtcu/lIaUUpRoFU0tAWgWR0CC/kkSElE7dX2UKGgGaAloD0MIkUWaeAf4DsCUhpRSlGgVTS0BaBZHQINDDJGOMl11fZQoaAZoCWgPQwjoFU890lAbQJSGlFKUaBVNLQFoFkdAg0UrLhaTwHV9lChoBmgJaA9DCEONQpJZPRrAlIaUUpRoFU0tAWgWR0CDRrO5avA5dX2UKGgGaAloD0MIknTN5JtZMkCUhpRSlGgVTS0BaBZHQINHQow22oh1fZQoaAZoCWgPQwhFZ5lFKFYawJSGlFKUaBVNLQFoFkdAg1g5ssQNC3V9lChoBmgJaA9DCEFEatrFFBjAlIaUUpRoFU0tAWgWR0CDWoay8jA0dX2UKGgGaAloD0MI2XiwxW7fDsCUhpRSlGgVTS0BaBZHQINbqvV3EAJ1fZQoaAZoCWgPQwgqj26ERQUOwJSGlFKUaBVNLQFoFkdAg1v72USqVHV9lChoBmgJaA9DCPFJJxJMdTlAlIaUUpRoFU0tAWgWR0CDapelbeMydX2UKGgGaAloD0MIHCPZI9TUIECUhpRSlGgVTS0BaBZHQINteza9K291fZQoaAZoCWgPQwhmho2yfrlEQJSGlFKUaBVNLQFoFkdAg2/k61b7j3V9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CDcHm9xp+MdX2UKGgGaAloD0MIdlJflnZ/WECUhpRSlGgVTS0BaBZHQIOFOalUIcB1fZQoaAZoCWgPQwik4v+OqJA2QJSGlFKUaBVNLQFoFkdAg4dtXYDkl3V9lChoBmgJaA9DCETcnEoGsBrAlIaUUpRoFU0tAWgWR0CDihCPZIxydX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQIOKpQYUFjd1fZQoaAZoCWgPQwi1wYno12pDQJSGlFKUaBVNLQFoFkdAg54rsa86FXV9lChoBmgJaA9DCKlOB7KeOhzAlIaUUpRoFU0tAWgWR0CDoO4rjHXFdX2UKGgGaAloD0MIic4yi1DMBUCUhpRSlGgVTS0BaBZHQIOjdAxBVuJ1fZQoaAZoCWgPQwjjNhrAW6gzQJSGlFKUaBVNLQFoFkdAg6RDvd/KAHV9lChoBmgJaA9DCGjqdYvAYDlAlIaUUpRoFU0tAWgWR0CDufq/M4cWdX2UKGgGaAloD0MI2qm53GCoG8CUhpRSlGgVTS0BaBZHQIO9EjJMg2Z1fZQoaAZoCWgPQwj4HFiOkOECwJSGlFKUaBVNLQFoFkdAg7/NBWxQi3V9lChoBmgJaA9DCHZwsDcxFBXAlIaUUpRoFU0tAWgWR0CDwM2606YFdX2UKGgGaAloD0MII4eIm1PZOUCUhpRSlGgVTS0BaBZHQIPU6mwaBI51fZQoaAZoCWgPQwjnGmZoPEEawJSGlFKUaBVNLQFoFkdAg9bFCswL3XV9lChoBmgJaA9DCP7tsl93+g7AlIaUUpRoFU0tAWgWR0CD2KkxASnMdX2UKGgGaAloD0MIyvrNxHShHMCUhpRSlGgVTS0BaBZHQIPZEpw0fo11fZQoaAZoCWgPQwinJVZGI68cwJSGlFKUaBVNLQFoFkdAhBqVs+FDfHV9lChoBmgJaA9DCEAyHTo9zw7AlIaUUpRoFU0tAWgWR0CEHBxnWattdX2UKGgGaAloD0MI/1vJjo3QHMCUhpRSlGgVTS0BaBZHQIQdW1KGtZF1fZQoaAZoCWgPQwh7Eticgy5VQJSGlFKUaBVNLQFoFkdAhB2v5pJwsHV9lChoBmgJaA9DCGppboWwBEBAlIaUUpRoFU0tAWgWR0CELdXYlIEsdX2UKGgGaAloD0MI3GgAb4FcIUCUhpRSlGgVTS0BaBZHQIQv86ij+Jh1fZQoaAZoCWgPQwjOFhBaD28awJSGlFKUaBVNLQFoFkdAhDGqjBVMmHV9lChoBmgJaA9DCDcz+tFwygXAlIaUUpRoFU0tAWgWR0CEMgxWT5fudX2UKGgGaAloD0MIfeiC+pbpI0CUhpRSlGgVTS0BaBZHQIRCvY6GQCF1fZQoaAZoCWgPQwgqqRPQRJgnQJSGlFKUaBVNLQFoFkdAhESh9LHuJHV9lChoBmgJaA9DCGechqjC/UxAlIaUUpRoFU0tAWgWR0CERevRJEpidX2UKGgGaAloD0MIcjPcgM9zMUCUhpRSlGgVTS0BaBZHQIRGgGbCrLh1fZQoaAZoCWgPQwgDJJpAEQsXwJSGlFKUaBVNLQFoFkdAhFHyRbKRuHV9lChoBmgJaA9DCH1cGyrG+RjAlIaUUpRoFU0tAWgWR0CEVDBKL877dX2UKGgGaAloD0MIysLX17qoRECUhpRSlGgVTS0BaBZHQIRVho9LYf51fZQoaAZoCWgPQwhRn+QOm1gewJSGlFKUaBVNLQFoFkdAhFXkhib2DnV9lChoBmgJaA9DCHZUNUHUDRnAlIaUUpRoFU0tAWgWR0CEZ25QxesxdX2UKGgGaAloD0MIv5zZrtDnDsCUhpRSlGgVTS0BaBZHQIRqiQxN7Bx1fZQoaAZoCWgPQwjF506w/1oIwJSGlFKUaBVNLQFoFkdAhGy9Sde6Z3V9lChoBmgJaA9DCFmIDoEjc05AlIaUUpRoFU0tAWgWR0CEbRliBoVVdX2UKGgGaAloD0MIWikEconjHcCUhpRSlGgVTS0BaBZHQIR/d2NedCp1fZQoaAZoCWgPQwiPboRFRfwOwJSGlFKUaBVNLQFoFkdAhIJcujASF3V9lChoBmgJaA9DCLaA0Hr4whzAlIaUUpRoFU0tAWgWR0CEhOXnhbW3dX2UKGgGaAloD0MIw7tcxHci87+UhpRSlGgVTS0BaBZHQISFrS1E3Kl1fZQoaAZoCWgPQwgI46dxbx4NwJSGlFKUaBVNLQFoFkdAhJ28KgIyCXV9lChoBmgJaA9DCMnnFU89MiBAlIaUUpRoFU0tAWgWR0CEoUe+VTrFdX2UKGgGaAloD0MI5q4l5IOe5b+UhpRSlGgVTS0BaBZHQISj0oKD0191fZQoaAZoCWgPQwiGHcakvyVEQJSGlFKUaBVNLQFoFkdAhKR0mD15B3V9lChoBmgJaA9DCF35LM+DOxLAlIaUUpRoFU0tAWgWR0CE+gTufEn9dX2UKGgGaAloD0MIuVD513KwfsCUhpRSlGgVS/VoFkdAhPr2UjcEeXV9lChoBmgJaA9DCJ25h4TvDSdAlIaUUpRoFU0tAWgWR0CE/OnVG0/odX2UKGgGaAloD0MIsVOsGoSJF8CUhpRSlGgVTS0BaBZHQIT+/TLGJep1fZQoaAZoCWgPQwj0jH3JxoMewJSGlFKUaBVNLQFoFkdAhRF0fYBeX3V9lChoBmgJaA9DCBDPEmQE9A7AlIaUUpRoFU0tAWgWR0CFEl+kxh2GdX2UKGgGaAloD0MIVBoxs89zHcCUhpRSlGgVTS0BaBZHQIUUuEPDpC91fZQoaAZoCWgPQwi6v3rct/oOwJSGlFKUaBVNLQFoFkdAhRbU29+PR3V9lChoBmgJaA9DCGdkkLsI0w7AlIaUUpRoFU0tAWgWR0CFKit+TeO5dX2UKGgGaAloD0MIOlyrPew1EsCUhpRSlGgVTS0BaBZHQIUqlH+ZPVN1fZQoaAZoCWgPQwhh+8kYH2YKQJSGlFKUaBVNLQFoFkdAhSwh+4LCvXV9lChoBmgJaA9DCBU5RNycSvG/lIaUUpRoFU0tAWgWR0CFLhyhBZ6ldX2UKGgGaAloD0MIkUWaeAf4DsCUhpRSlGgVTS0BaBZHQIVBrYoRZlp1fZQoaAZoCWgPQwi5jJsaaL4cwJSGlFKUaBVNLQFoFkdAhUJAZsKsuHV9lChoBmgJaA9DCIQtdvus0g7AlIaUUpRoFU0tAWgWR0CFRFvGZNO/dX2UKGgGaAloD0MIF2TL8nWZ4r+UhpRSlGgVTS0BaBZHQIVGwWac7Qt1fZQoaAZoCWgPQwjVIMztXq4IwJSGlFKUaBVNLQFoFkdAhVu6rNnoPnV9lChoBmgJaA9DCJELzuDvNw1AlIaUUpRoFU0tAWgWR0CFXHg/C66KdX2UKGgGaAloD0MISfQyiuWmHcCUhpRSlGgVTS0BaBZHQIVeaPKdQO51fZQoaAZoCWgPQwgK9fQR+AMewJSGlFKUaBVNLQFoFkdAhWDivHLidnV9lChoBmgJaA9DCL+c2a7Q5w7AlIaUUpRoFU0tAWgWR0CFczcE/0NCdX2UKGgGaAloD0MI12g50EPtHcCUhpRSlGgVTS0BaBZHQIVz/KU3XI51fZQoaAZoCWgPQwiDFhIwupA5QJSGlFKUaBVNLQFoFkdAhXV1qnFYMnV9lChoBmgJaA9DCBaJCWr46jhAlIaUUpRoFU0tAWgWR0CFdxO45Lh8dX2UKGgGaAloD0MIZRwj2SNUHcCUhpRSlGgVTS0BaBZHQIWKtkhA4XJ1fZQoaAZoCWgPQwhA+FCiJU8YwJSGlFKUaBVNLQFoFkdAhYuV5KODJ3V9lChoBmgJaA9DCNqpudxgCB7AlIaUUpRoFU0tAWgWR0CFjU6ij+JhdX2UKGgGaAloD0MITFEujV9YHsCUhpRSlGgVTS0BaBZHQIWPQePq9oN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -3.8750679450988676, "std_reward": 4.440892098500626e-16, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-
|
|
|
1 |
+
{"mean_reward": -3.8750679450988676, "std_reward": 4.440892098500626e-16, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T19:07:18.071947"}
|