Upload model to Hugging Face
Browse files- BC-no-theta.zip +1 -1
- BC-no-theta/data +16 -16
- BC-no-theta/policy.optimizer.pth +1 -1
- BC-no-theta/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- results.json +1 -1
BC-no-theta.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44021
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4286ece0aae47c860660921bbc7c79a0a205e6e7c3b80388e43a27c8b934c8d
|
3 |
size 44021
|
BC-no-theta/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
@@ -48,7 +48,7 @@
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -70,7 +70,7 @@
|
|
70 |
"_current_progress_remaining": -0.02400000000000002,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f57812f1360>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f57812f13f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f57812f1480>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f57812f1510>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f57812f15a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f57812f1630>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f57812f16c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f57812f1750>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f57812f17e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f57812f1870>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f57812f1900>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f57812f1990>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f57812debc0>"
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1681943225440024801,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAEo7FEM7e4w/AADIQrF5jkIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEK3oiFDlBczwAAAyEIAAMhCAADIQgAAyEIAAMhC616IQlzA8EGxmTZBUaUHQ0XdJUAAAMhCAADIQgAAyEIAAMhCAADIQpnmtUIAAMhCAADIQucM5UIhvYW/AADIQm84jEKIBGlCAmp4QpjURkLl5Z9CRrR6QgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
70 |
"_current_progress_remaining": -0.02400000000000002,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVJBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8X9HVKhygsCUhpRSlIwBbJRLVIwBdJRHQF8PZ9uxbB51fZQoaAZoCWgPQwj0UNuGEfR2wJSGlFKUaBVLX2gWR0BfET0th/iHdX2UKGgGaAloD0MInPhqRzECgcCUhpRSlGgVS9poFkdAXxN1mrbQC3V9lChoBmgJaA9DCCP0M/U6w3nAlIaUUpRoFUsKaBZHQF8U8Q7LdN51fZQoaAZoCWgPQwjSHcTOlMZ/wJSGlFKUaBVLTmgWR0BfHySFGoaUdX2UKGgGaAloD0MI3QcgtYnyd8CUhpRSlGgVSw9oFkdAXyPrpqynk3V9lChoBmgJaA9DCKgZUkXxSoLAlIaUUpRoFUtRaBZHQF8q8+A3DN11fZQoaAZoCWgPQwicUfNVsnyBwJSGlFKUaBVLWWgWR0BfNdliBoVVdX2UKGgGaAloD0MIJUBNLRvUecCUhpRSlGgVSwpoFkdAXzvojfNzKnV9lChoBmgJaA9DCLMmFvhKynjAlIaUUpRoFUsVaBZHQF9IaHbh3q11fZQoaAZoCWgPQwj9hR4xWoGDwJSGlFKUaBVLXWgWR0BfUMKXv6TGdX2UKGgGaAloD0MIsvZ3tif0gsCUhpRSlGgVS0loFkdAX1H4sVclgXV9lChoBmgJaA9DCORmuAE/xYLAlIaUUpRoFUtbaBZHQGBQMeOn2qV1fZQoaAZoCWgPQwgkfzDwXJB5wJSGlFKUaBVLEGgWR0BgUykyk9EDdX2UKGgGaAloD0MIIEYIjzbYVcCUhpRSlGgVTS0BaBZHQGBev1ct5D91fZQoaAZoCWgPQwg+IxEaAUR4wJSGlFKUaBVLE2gWR0BgYsKRdQfqdX2UKGgGaAloD0MIIoleRnGQeMCUhpRSlGgVSxNoFkdAYGmOxSpBHHV9lChoBmgJaA9DCGMnvATnmXnAlIaUUpRoFUtcaBZHQGBqDQRf4RF1fZQoaAZoCWgPQwgiOZm4lSWAwJSGlFKUaBVLz2gWR0BgbUW69TP0dX2UKGgGaAloD0MIfuNrz+xDeMCUhpRSlGgVSxJoFkdAYG9dDYywfXV9lChoBmgJaA9DCAIR4so5tYPAlIaUUpRoFU0RAWgWR0BgefQ+lj3FdX2UKGgGaAloD0MIlN3M6Ae9ecCUhpRSlGgVSw5oFkdAYH7Ck43m3nV9lChoBmgJaA9DCAPMfAefd4LAlIaUUpRoFUuWaBZHQGChi/oJRfp1fZQoaAZoCWgPQwjWWMLaGMuCwJSGlFKUaBVLpmgWR0BgpPTb349HdX2UKGgGaAloD0MISl0yjlF9ecCUhpRSlGgVSw1oFkdAYKqVXV9WqHV9lChoBmgJaA9DCBYyVwb15YLAlIaUUpRoFUvpaBZHQGC9ju8brC51fZQoaAZoCWgPQwg4FD5bh7iBwJSGlFKUaBVLO2gWR0Bgw/2ZiNKidX2UKGgGaAloD0MIwhIPKLsjg8CUhpRSlGgVS8RoFkdAYMr/QSi/PHV9lChoBmgJaA9DCOXwSSfCzpJAlIaUUpRoFUuDaBZHQGDVsjNY8uB1fZQoaAZoCWgPQwjY2CWqt9aAwJSGlFKUaBVLUGgWR0Bg2yfSQYDUdX2UKGgGaAloD0MIl6jeGlh3d8CUhpRSlGgVS2FoFkdAYOZrleWv83V9lChoBmgJaA9DCNulDYflhnfAlIaUUpRoFUtfaBZHQGEIe4LCvX91fZQoaAZoCWgPQwiXj6Skx3N5wJSGlFKUaBVLumgWR0BhDR97WuoxdX2UKGgGaAloD0MIHFw65vy5ecCUhpRSlGgVSw1oFkdAYQ002tMfzXV9lChoBmgJaA9DCPq2YKnu44PAlIaUUpRoFUtWaBZHQGEqgUDdP+J1fZQoaAZoCWgPQwgNjSeCeGp4wJSGlFKUaBVLYGgWR0BhLpaxHG0edX2UKGgGaAloD0MIQDIdOv27ecCUhpRSlGgVSw1oFkdAYTL07r9l3HV9lChoBmgJaA9DCBjMXyFz9FnAlIaUUpRoFU0tAWgWR0BhP8mnfl6rdX2UKGgGaAloD0MI0a+tn/5cXsCUhpRSlGgVTS0BaBZHQGFE4uK4x1x1fZQoaAZoCWgPQwgVcxB0lJiBwJSGlFKUaBVLSmgWR0BhTPhuO0b+dX2UKGgGaAloD0MI3CxeLGx+gsCUhpRSlGgVS0BoFkdAYVf0mMOwxHV9lChoBmgJaA9DCMajVMIz7YHAlIaUUpRoFUs8aBZHQGFcxD1Gsmx1fZQoaAZoCWgPQwidZKvLKaZ5wJSGlFKUaBVLDWgWR0BhXW7tiQT3dX2UKGgGaAloD0MIUu4+x4fygcCUhpRSlGgVS6JoFkdAYWkfDDTBqXV9lChoBmgJaA9DCJxQiIDDi3nAlIaUUpRoFUsMaBZHQGFtyncclw91fZQoaAZoCWgPQwjbboJvulaCwJSGlFKUaBVLL2gWR0BhcNd1MdtEdX2UKGgGaAloD0MIe4MvTEaXhMCUhpRSlGgVS19oFkdAYYXP3ztkWnV9lChoBmgJaA9DCDy/KEGfJ4LAlIaUUpRoFUs6aBZHQGGF4Cp3os91fZQoaAZoCWgPQwguc7osJiF4wJSGlFKUaBVLEWgWR0BhjacXm/34dX2UKGgGaAloD0MId/S/XKvCgsCUhpRSlGgVS5loFkdAYY4Rr8BMjHV9lChoBmgJaA9DCPg2/dkPi3fAlIaUUpRoFUsUaBZHQGGOq3mV7hN1fZQoaAZoCWgPQwjajqm78gt6wJSGlFKUaBVLC2gWR0Bhk50OmR/3dX2UKGgGaAloD0MIzojS3uC/d8CUhpRSlGgVS2toFkdAYZ9WwNb1RXV9lChoBmgJaA9DCCRHOgNjZYDAlIaUUpRoFUtKaBZHQGGti/oJRfp1fZQoaAZoCWgPQwgG9phIabx4wJSGlFKUaBVLE2gWR0BhtVh1DBuXdX2UKGgGaAloD0MIdXgI46eoecCUhpRSlGgVS2ZoFkdAYbkQxvegtnV9lChoBmgJaA9DCN0Ii4oYuYHAlIaUUpRoFUsqaBZHQGHNlI/Z/Td1fZQoaAZoCWgPQwjzVIfcDH95wJSGlFKUaBVLDGgWR0Bh0t9ph4MXdX2UKGgGaAloD0MIa2PshBd3ecCUhpRSlGgVSwpoFkdAYdh9xZMcqHV9lChoBmgJaA9DCC0FpP0vyYHAlIaUUpRoFUuSaBZHQGHhY2CNCJJ1fZQoaAZoCWgPQwhmTMEapyKCwJSGlFKUaBVLPmgWR0Bh9n7pFCswdX2UKGgGaAloD0MI2CjrN5MLd8CUhpRSlGgVSxZoFkdAYfyLjxTbWXV9lChoBmgJaA9DCLpm8s22U3jAlIaUUpRoFUsSaBZHQGIBAlF+d9V1fZQoaAZoCWgPQwj3kVuTbgM4QJSGlFKUaBVNLQFoFkdAYghcKw6hg3V9lChoBmgJaA9DCITXLm1Ye4LAlIaUUpRoFUvlaBZHQGILPNmlImR1fZQoaAZoCWgPQwh5zEBlPH14wJSGlFKUaBVLEmgWR0BiDeqcVgx8dX2UKGgGaAloD0MILzGW6df2ecCUhpRSlGgVSwpoFkdAYg3pdrwfAHV9lChoBmgJaA9DCGx55Xp704PAlIaUUpRoFUtbaBZHQGIbpcX3xnZ1fZQoaAZoCWgPQwj4iJgS6UuCwJSGlFKUaBVLNmgWR0BiHdMCcPOIdX2UKGgGaAloD0MIbjSAt4Bkf8CUhpRSlGgVS1FoFkdAYiTnpSrHVHV9lChoBmgJaA9DCHcwYp8ANXnAlIaUUpRoFUsMaBZHQGIonLzPKMh1fZQoaAZoCWgPQwiwyRr1ECmAwJSGlFKUaBVLRmgWR0BiLU384xUOdX2UKGgGaAloD0MIRrQdU3dIf8CUhpRSlGgVS0loFkdAYi9nWattAXV9lChoBmgJaA9DCJhPVgxXQ1tAlIaUUpRoFU0tAWgWR0BiMND4QBgedX2UKGgGaAloD0MI9SoyOiDcecCUhpRSlGgVSxJoFkdAYjDXbM5fdHV9lChoBmgJaA9DCKES1zFu2nnAlIaUUpRoFUsTaBZHQGIzHBDXvph1fZQoaAZoCWgPQwhmvK302pJ5wJSGlFKUaBVLDGgWR0BiNjAi3XqadX2UKGgGaAloD0MIQzf7A2VngsCUhpRSlGgVS0ZoFkdAYkDGhEjPfXV9lChoBmgJaA9DCIHNOXjGToHAlIaUUpRoFUtVaBZHQGJE1IAfdRB1fZQoaAZoCWgPQwhdwMsMmz93wJSGlFKUaBVLt2gWR0BiWzmSyMUAdX2UKGgGaAloD0MI4Nv0Zz/ifsCUhpRSlGgVS1FoFkdAYn7tEXtSh3V9lChoBmgJaA9DCFsjgnGwbXnAlIaUUpRoFUu2aBZHQGKMaxPfsNV1fZQoaAZoCWgPQwgxzt+Ewlx4wJSGlFKUaBVLr2gWR0Bij5Yoy9EkdX2UKGgGaAloD0MIwHrct5p3eMCUhpRSlGgVSxFoFkdAYpXkFwDNhXV9lChoBmgJaA9DCOepDrl5JIPAlIaUUpRoFUtiaBZHQGKnu9nK4hF1fZQoaAZoCWgPQwjV6UDWUw9TwJSGlFKUaBVNLQFoFkdAYqkoOQQtjHV9lChoBmgJaA9DCDogCft2DIPAlIaUUpRoFUtNaBZHQGK1RQBPsRh1fZQoaAZoCWgPQwhdTgmIydp5wJSGlFKUaBVLCmgWR0BiuTTDwYtQdX2UKGgGaAloD0MIYFs//WcvfsCUhpRSlGgVS3VoFkdAYrsPS2H+InV9lChoBmgJaA9DCEkQroCCsnnAlIaUUpRoFUsKaBZHQGK+TvJA+px1fZQoaAZoCWgPQwivQzUlWa6CwJSGlFKUaBVLTGgWR0BixsslLOAzdX2UKGgGaAloD0MIIGCt2jVXd8CUhpRSlGgVSxhoFkdAYtBW6K+BYnV9lChoBmgJaA9DCL6/QXu1HYLAlIaUUpRoFUtDaBZHQGLTQiiZfD11fZQoaAZoCWgPQwjI7gIlxXKCwJSGlFKUaBVLjGgWR0Bi31c2R7qqdX2UKGgGaAloD0MI7ZxmgbaMd8CUhpRSlGgVS1VoFkdAYvBNxEORT3V9lChoBmgJaA9DCHu9++PdgYPAlIaUUpRoFUtiaBZHQGL33wCr92p1fZQoaAZoCWgPQwh23VuRGAqCwJSGlFKUaBVLSmgWR0Bi+WqebutwdX2UKGgGaAloD0MIaMu5FDfBgMCUhpRSlGgVS6NoFkdAYvuiYb83uXV9lChoBmgJaA9DCO/k02N7y4LAlIaUUpRoFUtNaBZHQGMXgmJFb3Z1fZQoaAZoCWgPQwiXjGMkO8N2wJSGlFKUaBVLdWgWR0BjJODFqBVddWUu"
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
BC-no-theta/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 18973
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82f5e112487c05cc3f0e92cfa49b14cd910edb04ad002d7cfb37cd4b1c221483
|
3 |
size 18973
|
BC-no-theta/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 9295
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7990a77c1b43fb050148cf70da6dd1bdb7eb015fdcce89040570f76fe162433a
|
3 |
size 9295
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: RoombaAToB-no-theta
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: RoombaAToB-no-theta
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -3.88 +/- 0.00
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f59400f1360>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f59400f13f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f59400f1480>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f59400f1510>", "_build": "<function ActorCriticPolicy._build at 0x7f59400f15a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f59400f1630>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f59400f16c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f59400f1750>", "_predict": "<function ActorCriticPolicy._predict at 0x7f59400f17e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f59400f1870>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f59400f1900>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f59400f1990>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5940ca59c0>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 40960, "_total_timesteps": 40000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681942868378092094, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAADDBlEJJvxK/Bl4yQowny0GN99pBAADIQvkLmkLMrcRCAADIQgAAyELVFbRCY6YjPwAAyEIAAMhCJvsrQp9sPULwfblCAADIQgAAyEKvxgZCHZwpQ4o6878AAMhCAADIQgAAyEIAAMhC1lqVQgAAyEIAAMhCXmilQgB3vEJuaay/AADIQg+2f0LOIVRCAADIQjw7vELymKBCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFRkdkIRGhMCUhpRSlIwBbJRLY4wBdJRHQFvtnZCfHxV1fZQoaAZoCWgPQwg5gH7f/8t5wJSGlFKUaBVLDmgWR0Bb9C+De0ojdX2UKGgGaAloD0MI38K68W4CesCUhpRSlGgVSwtoFkdAW/czuWrwOXV9lChoBmgJaA9DCPSltz+XtHnAlIaUUpRoFUsNaBZHQFwBueSSvDB1fZQoaAZoCWgPQwjB4nDmFyh5wJSGlFKUaBVLEmgWR0BcEixiXpnpdX2UKGgGaAloD0MI+3lTkYo4esCUhpRSlGgVS9doFkdAXCDTTfBN23V9lChoBmgJaA9DCOARFao7y4TAlIaUUpRoFUtbaBZHQFw24Irvsqt1fZQoaAZoCWgPQwgiGt1BTH2DwJSGlFKUaBVLXmgWR0BcQuWfK6nSdX2UKGgGaAloD0MIyatzDMhvesCUhpRSlGgVS2ZoFkdAXGKHUMG5c3V9lChoBmgJaA9DCMPvplvWg4jAlIaUUpRoFUtZaBZHQFxnuA7Pppx1fZQoaAZoCWgPQwh4KuCeZ/p5wJSGlFKUaBVLDWgWR0BcbJ3os7MgdX2UKGgGaAloD0MImZtvRJc2gsCUhpRSlGgVS0doFkdAXG4ZHd43WHV9lChoBmgJaA9DCOrPfqSIjXnAlIaUUpRoFUsMaBZHQFxxfWcz68B1fZQoaAZoCWgPQwhTeqaXGLd5wJSGlFKUaBVLDWgWR0Bce7bg0j1PdX2UKGgGaAloD0MIBOYhU755ecCUhpRSlGgVSxRoFkdAXI0F4cFQmHV9lChoBmgJaA9DCE+RQ8RNCHnAlIaUUpRoFUtjaBZHQF7iqL0jC551fZQoaAZoCWgPQwi8OzJWu1WEwJSGlFKUaBVLo2gWR0Be9q6J66atdX2UKGgGaAloD0MIbTgsDTyzgsCUhpRSlGgVSztoFkdAXxCZ+hGpdnV9lChoBmgJaA9DCE2HTs+7soHAlIaUUpRoFU0VAWgWR0BfIpr1uivgdX2UKGgGaAloD0MIG0mCcCXJgsCUhpRSlGgVSzxoFkdAXyQ4hllK9XV9lChoBmgJaA9DCHqM8swLVnrAlIaUUpRoFUsOaBZHQF8vtWMju8d1fZQoaAZoCWgPQwhtG0ZBcPKGwJSGlFKUaBVL6mgWR0BfMHUH6dlNdX2UKGgGaAloD0MI7dXHQ990eMCUhpRSlGgVSw9oFkdAXznkkrwvx3V9lChoBmgJaA9DCA1yF2EKN3fAlIaUUpRoFUs7aBZHQF894HX2/SJ1fZQoaAZoCWgPQwgZBFYOzaSCwJSGlFKUaBVLRmgWR0BfWWA9V3lkdX2UKGgGaAloD0MIa9YZ31fxecCUhpRSlGgVSwpoFkdAX125MDfWMHV9lChoBmgJaA9DCEPJ5NRuCYHAlIaUUpRoFUumaBZHQF+zWrwOOKh1fZQoaAZoCWgPQwiPG343HSd6wJSGlFKUaBVLD2gWR0BfvuyeI2wWdX2UKGgGaAloD0MIB0Dc1avogcCUhpRSlGgVS81oFkdAX8hsMy8BdXV9lChoBmgJaA9DCFCKVu4FFXnAlIaUUpRoFUsVaBZHQF/YYE4ecQR1fZQoaAZoCWgPQwhAa378hWOCwJSGlFKUaBVLOmgWR0Bf7KOcUdq+dX2UKGgGaAloD0MI3zZTId4Ee8CUhpRSlGgVS8NoFkdAX/W5vtMPBnV9lChoBmgJaA9DCN83vvZM03nAlIaUUpRoFUsRaBZHQF/61anrIHV1fZQoaAZoCWgPQwhV9l0RXC+CwJSGlFKUaBVLOGgWR0BgAWZy+6AfdX2UKGgGaAloD0MIHEKVmr3EecCUhpRSlGgVSw5oFkdAYAHrFfiPyXV9lChoBmgJaA9DCIidKXReZHjAlIaUUpRoFUsUaBZHQGAIyUs4DLd1fZQoaAZoCWgPQwgJbTmXgq2GwJSGlFKUaBVNKgFoFkdAYA7rleWv83V9lChoBmgJaA9DCMiXUMFh7ILAlIaUUpRoFUs7aBZHQGAl7yH2ys11fZQoaAZoCWgPQwhxWBr40YiDwJSGlFKUaBVLVWgWR0BgKZ42S+xodX2UKGgGaAloD0MIL6hvmdPggsCUhpRSlGgVS0FoFkdAYEBxI8QqZ3V9lChoBmgJaA9DCNfCLLSTaoTAlIaUUpRoFUu6aBZHQGBBe1a4c3l1fZQoaAZoCWgPQwhOl8XEhk6CwJSGlFKUaBVLrGgWR0BgQx02cawVdX2UKGgGaAloD0MIObnfoQjog8CUhpRSlGgVS0VoFkdAYEVvbXYlIHV9lChoBmgJaA9DCHVz8bf9vXnAlIaUUpRoFUsOaBZHQGBJMXizcAR1fZQoaAZoCWgPQwj4G+244SJ4wJSGlFKUaBVLFWgWR0BgTPT5O8CgdX2UKGgGaAloD0MI75HNVRN5gsCUhpRSlGgVSzxoFkdAYF0/vfCQ93V9lChoBmgJaA9DCGZLVkUYT4HAlIaUUpRoFUtoaBZHQGBkMFEAo5R1fZQoaAZoCWgPQwiyZ89l6kp3wJSGlFKUaBVLjGgWR0BggVzySV4YdX2UKGgGaAloD0MIjPM3ofCMgcCUhpRSlGgVS3toFkdAYJaq+8Gs3nV9lChoBmgJaA9DCONV1jaFW4HAlIaUUpRoFUvhaBZHQGCXR6fJ3gV1fZQoaAZoCWgPQwjTLTvE3wuFwJSGlFKUaBVLnGgWR0Bgmu2PT5O8dX2UKGgGaAloD0MIiGnf3F9LecCUhpRSlGgVSxVoFkdAYJ3n5BTn73V9lChoBmgJaA9DCGMnvASnM4PAlIaUUpRoFUtOaBZHQGCfleWv8qF1fZQoaAZoCWgPQwghzsMJTH96wJSGlFKUaBVLFWgWR0BgpLin5zo2dX2UKGgGaAloD0MISNxj6SMjg8CUhpRSlGgVS0doFkdAYLKZJCjUNXV9lChoBmgJaA9DCGXG20pv83rAlIaUUpRoFUtdaBZHQGC0JAD7qIJ1fZQoaAZoCWgPQwgyj/zBQGqDwJSGlFKUaBVLmmgWR0Bgw3RqoIfKdX2UKGgGaAloD0MINj6T/ZM4g8CUhpRSlGgVS0poFkdAYMjTuv2XcHV9lChoBmgJaA9DCM+G/DND7IDAlIaUUpRoFUuPaBZHQGDgRoqTbFl1fZQoaAZoCWgPQwjbozfcx7mEwJSGlFKUaBVLzWgWR0Bg4FYMfA9FdX2UKGgGaAloD0MIxoZu9ofBg8CUhpRSlGgVS15oFkdAYOZjABT4tnV9lChoBmgJaA9DCKEuUijLHnfAlIaUUpRoFUt3aBZHQGDp3VbzK9x1fZQoaAZoCWgPQwg+esN95Pt6wJSGlFKUaBVLWmgWR0BhBXjdYW+HdX2UKGgGaAloD0MIJT0Mre4Xg8CUhpRSlGgVS0xoFkdAYQYvh60IC3V9lChoBmgJaA9DCE7VPbKZy4XAlIaUUpRoFUtmaBZHQGEULvsqril1fZQoaAZoCWgPQwiEuHL2Dpp4wJSGlFKUaBVLY2gWR0BhNKpm29csdX2UKGgGaAloD0MIVb/S+XB8ecCUhpRSlGgVSwxoFkdAYTkUrTYukHV9lChoBmgJaA9DCA9FgT7x9ILAlIaUUpRoFUuiaBZHQGFNE25xzaN1fZQoaAZoCWgPQwiEnziAHneCwJSGlFKUaBVLO2gWR0BhUXQpnYg8dX2UKGgGaAloD0MIBK+WO3MResCUhpRSlGgVSwpoFkdAYVGJ5VwPy3V9lChoBmgJaA9DCNobfGGy0oLAlIaUUpRoFUuhaBZHQGFccuanaWZ1fZQoaAZoCWgPQwh7ouvCTzd6wJSGlFKUaBVLC2gWR0BhYhQYUFjedX2UKGgGaAloD0MIrYbEPdardcCUhpRSlGgVTS0BaBZHQGFkYmsvIwN1fZQoaAZoCWgPQwizzY3piaGCwJSGlFKUaBVLP2gWR0Bhb2W4Vh1DdX2UKGgGaAloD0MI16NwPWr9gsCUhpRSlGgVS0ZoFkdAYXK/8l5WzXV9lChoBmgJaA9DCBn/PuPC/XnAlIaUUpRoFUsNaBZHQGF5T4DcM3J1fZQoaAZoCWgPQwj4M7xZYwKEwJSGlFKUaBVLdmgWR0Bhlx44ZMtcdX2UKGgGaAloD0MIHhmrzb9pdsCUhpRSlGgVS3hoFkdAYaMP1+RYBHV9lChoBmgJaA9DCP+WAPzTBHrAlIaUUpRoFUsJaBZHQGGmpjMFEAp1fZQoaAZoCWgPQwhzLVqAdg55wJSGlFKUaBVLr2gWR0Bhv3HmzSkTdX2UKGgGaAloD0MIUMJM23/2ecCUhpRSlGgVSw5oFkdAYcVgNwzch3V9lChoBmgJaA9DCD7NyYuMMHvAlIaUUpRoFUtjaBZHQGHNbuc+aBt1fZQoaAZoCWgPQwgqc/ONSEyCwJSGlFKUaBVLOGgWR0Bh3aKR+z+ndX2UKGgGaAloD0MI8X9HVKgVesCUhpRSlGgVTSkBaBZHQGHfHYQJ5Vx1fZQoaAZoCWgPQwiJKCZvAFd6wJSGlFKUaBVLDmgWR0Bh4tmlImPYdX2UKGgGaAloD0MIwjOhSSL/ecCUhpRSlGgVS1xoFkdAYgJobn5i3HV9lChoBmgJaA9DCHehuU4jJSbAlIaUUpRoFU0tAWgWR0BiEZ6v7m+1dX2UKGgGaAloD0MILhwIySJ/g8CUhpRSlGgVS6hoFkdAYiVPdl/YrnV9lChoBmgJaA9DCMLc7uV+p3nAlIaUUpRoFUtjaBZHQGIqbTlT3qR1fZQoaAZoCWgPQwihTKPJxQd5wJSGlFKUaBVLFGgWR0BiM4/oq0+ldX2UKGgGaAloD0MI9dkB15X4eMCUhpRSlGgVS15oFkdAYjehllK9PHV9lChoBmgJaA9DCM6I0t6gvnfAlIaUUpRoFUsSaBZHQGI7NaQmu1Z1fZQoaAZoCWgPQwgx0/avbCR5wJSGlFKUaBVLEWgWR0BiPaj1wo9cdX2UKGgGaAloD0MIUP2DSIbwg8CUhpRSlGgVTRgBaBZHQGI+Xg1m8NB1fZQoaAZoCWgPQwjqd2FrNkN6wJSGlFKUaBVLD2gWR0BiQPJLdvbXdX2UKGgGaAloD0MI/7J78nCOgcCUhpRSlGgVS0VoFkdAYkHUpd8iOnV9lChoBmgJaA9DCEpfCDkPEYLAlIaUUpRoFUsxaBZHQGJVWjO9nK51fZQoaAZoCWgPQwhoCTICqgZ6wJSGlFKUaBVLDGgWR0BiWhiVjZtfdX2UKGgGaAloD0MIBI2ZRL3pd8CUhpRSlGgVSxdoFkdAYmPR7Z39rHV9lChoBmgJaA9DCNzwu+lWD4TAlIaUUpRoFUthaBZHQGJodYfW+XZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f57812f1360>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f57812f13f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f57812f1480>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f57812f1510>", "_build": "<function ActorCriticPolicy._build at 0x7f57812f15a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f57812f1630>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f57812f16c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f57812f1750>", "_predict": "<function ActorCriticPolicy._predict at 0x7f57812f17e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f57812f1870>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f57812f1900>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f57812f1990>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f57812debc0>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 40960, "_total_timesteps": 40000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681943225440024801, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAEo7FEM7e4w/AADIQrF5jkIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEK3oiFDlBczwAAAyEIAAMhCAADIQgAAyEIAAMhC616IQlzA8EGxmTZBUaUHQ0XdJUAAAMhCAADIQgAAyEIAAMhCAADIQpnmtUIAAMhCAADIQucM5UIhvYW/AADIQm84jEKIBGlCAmp4QpjURkLl5Z9CRrR6QgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8X9HVKhygsCUhpRSlIwBbJRLVIwBdJRHQF8PZ9uxbB51fZQoaAZoCWgPQwj0UNuGEfR2wJSGlFKUaBVLX2gWR0BfET0th/iHdX2UKGgGaAloD0MInPhqRzECgcCUhpRSlGgVS9poFkdAXxN1mrbQC3V9lChoBmgJaA9DCCP0M/U6w3nAlIaUUpRoFUsKaBZHQF8U8Q7LdN51fZQoaAZoCWgPQwjSHcTOlMZ/wJSGlFKUaBVLTmgWR0BfHySFGoaUdX2UKGgGaAloD0MI3QcgtYnyd8CUhpRSlGgVSw9oFkdAXyPrpqynk3V9lChoBmgJaA9DCKgZUkXxSoLAlIaUUpRoFUtRaBZHQF8q8+A3DN11fZQoaAZoCWgPQwicUfNVsnyBwJSGlFKUaBVLWWgWR0BfNdliBoVVdX2UKGgGaAloD0MIJUBNLRvUecCUhpRSlGgVSwpoFkdAXzvojfNzKnV9lChoBmgJaA9DCLMmFvhKynjAlIaUUpRoFUsVaBZHQF9IaHbh3q11fZQoaAZoCWgPQwj9hR4xWoGDwJSGlFKUaBVLXWgWR0BfUMKXv6TGdX2UKGgGaAloD0MIsvZ3tif0gsCUhpRSlGgVS0loFkdAX1H4sVclgXV9lChoBmgJaA9DCORmuAE/xYLAlIaUUpRoFUtbaBZHQGBQMeOn2qV1fZQoaAZoCWgPQwgkfzDwXJB5wJSGlFKUaBVLEGgWR0BgUykyk9EDdX2UKGgGaAloD0MIIEYIjzbYVcCUhpRSlGgVTS0BaBZHQGBev1ct5D91fZQoaAZoCWgPQwg+IxEaAUR4wJSGlFKUaBVLE2gWR0BgYsKRdQfqdX2UKGgGaAloD0MIIoleRnGQeMCUhpRSlGgVSxNoFkdAYGmOxSpBHHV9lChoBmgJaA9DCGMnvATnmXnAlIaUUpRoFUtcaBZHQGBqDQRf4RF1fZQoaAZoCWgPQwgiOZm4lSWAwJSGlFKUaBVLz2gWR0BgbUW69TP0dX2UKGgGaAloD0MIfuNrz+xDeMCUhpRSlGgVSxJoFkdAYG9dDYywfXV9lChoBmgJaA9DCAIR4so5tYPAlIaUUpRoFU0RAWgWR0BgefQ+lj3FdX2UKGgGaAloD0MIlN3M6Ae9ecCUhpRSlGgVSw5oFkdAYH7Ck43m3nV9lChoBmgJaA9DCAPMfAefd4LAlIaUUpRoFUuWaBZHQGChi/oJRfp1fZQoaAZoCWgPQwjWWMLaGMuCwJSGlFKUaBVLpmgWR0BgpPTb349HdX2UKGgGaAloD0MISl0yjlF9ecCUhpRSlGgVSw1oFkdAYKqVXV9WqHV9lChoBmgJaA9DCBYyVwb15YLAlIaUUpRoFUvpaBZHQGC9ju8brC51fZQoaAZoCWgPQwg4FD5bh7iBwJSGlFKUaBVLO2gWR0Bgw/2ZiNKidX2UKGgGaAloD0MIwhIPKLsjg8CUhpRSlGgVS8RoFkdAYMr/QSi/PHV9lChoBmgJaA9DCOXwSSfCzpJAlIaUUpRoFUuDaBZHQGDVsjNY8uB1fZQoaAZoCWgPQwjY2CWqt9aAwJSGlFKUaBVLUGgWR0Bg2yfSQYDUdX2UKGgGaAloD0MIl6jeGlh3d8CUhpRSlGgVS2FoFkdAYOZrleWv83V9lChoBmgJaA9DCNulDYflhnfAlIaUUpRoFUtfaBZHQGEIe4LCvX91fZQoaAZoCWgPQwiXj6Skx3N5wJSGlFKUaBVLumgWR0BhDR97WuoxdX2UKGgGaAloD0MIHFw65vy5ecCUhpRSlGgVSw1oFkdAYQ002tMfzXV9lChoBmgJaA9DCPq2YKnu44PAlIaUUpRoFUtWaBZHQGEqgUDdP+J1fZQoaAZoCWgPQwgNjSeCeGp4wJSGlFKUaBVLYGgWR0BhLpaxHG0edX2UKGgGaAloD0MIQDIdOv27ecCUhpRSlGgVSw1oFkdAYTL07r9l3HV9lChoBmgJaA9DCBjMXyFz9FnAlIaUUpRoFU0tAWgWR0BhP8mnfl6rdX2UKGgGaAloD0MI0a+tn/5cXsCUhpRSlGgVTS0BaBZHQGFE4uK4x1x1fZQoaAZoCWgPQwgVcxB0lJiBwJSGlFKUaBVLSmgWR0BhTPhuO0b+dX2UKGgGaAloD0MI3CxeLGx+gsCUhpRSlGgVS0BoFkdAYVf0mMOwxHV9lChoBmgJaA9DCMajVMIz7YHAlIaUUpRoFUs8aBZHQGFcxD1Gsmx1fZQoaAZoCWgPQwidZKvLKaZ5wJSGlFKUaBVLDWgWR0BhXW7tiQT3dX2UKGgGaAloD0MIUu4+x4fygcCUhpRSlGgVS6JoFkdAYWkfDDTBqXV9lChoBmgJaA9DCJxQiIDDi3nAlIaUUpRoFUsMaBZHQGFtyncclw91fZQoaAZoCWgPQwjbboJvulaCwJSGlFKUaBVLL2gWR0BhcNd1MdtEdX2UKGgGaAloD0MIe4MvTEaXhMCUhpRSlGgVS19oFkdAYYXP3ztkWnV9lChoBmgJaA9DCDy/KEGfJ4LAlIaUUpRoFUs6aBZHQGGF4Cp3os91fZQoaAZoCWgPQwguc7osJiF4wJSGlFKUaBVLEWgWR0BhjacXm/34dX2UKGgGaAloD0MId/S/XKvCgsCUhpRSlGgVS5loFkdAYY4Rr8BMjHV9lChoBmgJaA9DCPg2/dkPi3fAlIaUUpRoFUsUaBZHQGGOq3mV7hN1fZQoaAZoCWgPQwjajqm78gt6wJSGlFKUaBVLC2gWR0Bhk50OmR/3dX2UKGgGaAloD0MIzojS3uC/d8CUhpRSlGgVS2toFkdAYZ9WwNb1RXV9lChoBmgJaA9DCCRHOgNjZYDAlIaUUpRoFUtKaBZHQGGti/oJRfp1fZQoaAZoCWgPQwgG9phIabx4wJSGlFKUaBVLE2gWR0BhtVh1DBuXdX2UKGgGaAloD0MIdXgI46eoecCUhpRSlGgVS2ZoFkdAYbkQxvegtnV9lChoBmgJaA9DCN0Ii4oYuYHAlIaUUpRoFUsqaBZHQGHNlI/Z/Td1fZQoaAZoCWgPQwjzVIfcDH95wJSGlFKUaBVLDGgWR0Bh0t9ph4MXdX2UKGgGaAloD0MIa2PshBd3ecCUhpRSlGgVSwpoFkdAYdh9xZMcqHV9lChoBmgJaA9DCC0FpP0vyYHAlIaUUpRoFUuSaBZHQGHhY2CNCJJ1fZQoaAZoCWgPQwhmTMEapyKCwJSGlFKUaBVLPmgWR0Bh9n7pFCswdX2UKGgGaAloD0MI2CjrN5MLd8CUhpRSlGgVSxZoFkdAYfyLjxTbWXV9lChoBmgJaA9DCLpm8s22U3jAlIaUUpRoFUsSaBZHQGIBAlF+d9V1fZQoaAZoCWgPQwj3kVuTbgM4QJSGlFKUaBVNLQFoFkdAYghcKw6hg3V9lChoBmgJaA9DCITXLm1Ye4LAlIaUUpRoFUvlaBZHQGILPNmlImR1fZQoaAZoCWgPQwh5zEBlPH14wJSGlFKUaBVLEmgWR0BiDeqcVgx8dX2UKGgGaAloD0MILzGW6df2ecCUhpRSlGgVSwpoFkdAYg3pdrwfAHV9lChoBmgJaA9DCGx55Xp704PAlIaUUpRoFUtbaBZHQGIbpcX3xnZ1fZQoaAZoCWgPQwj4iJgS6UuCwJSGlFKUaBVLNmgWR0BiHdMCcPOIdX2UKGgGaAloD0MIbjSAt4Bkf8CUhpRSlGgVS1FoFkdAYiTnpSrHVHV9lChoBmgJaA9DCHcwYp8ANXnAlIaUUpRoFUsMaBZHQGIonLzPKMh1fZQoaAZoCWgPQwiwyRr1ECmAwJSGlFKUaBVLRmgWR0BiLU384xUOdX2UKGgGaAloD0MIRrQdU3dIf8CUhpRSlGgVS0loFkdAYi9nWattAXV9lChoBmgJaA9DCJhPVgxXQ1tAlIaUUpRoFU0tAWgWR0BiMND4QBgedX2UKGgGaAloD0MI9SoyOiDcecCUhpRSlGgVSxJoFkdAYjDXbM5fdHV9lChoBmgJaA9DCKES1zFu2nnAlIaUUpRoFUsTaBZHQGIzHBDXvph1fZQoaAZoCWgPQwhmvK302pJ5wJSGlFKUaBVLDGgWR0BiNjAi3XqadX2UKGgGaAloD0MIQzf7A2VngsCUhpRSlGgVS0ZoFkdAYkDGhEjPfXV9lChoBmgJaA9DCIHNOXjGToHAlIaUUpRoFUtVaBZHQGJE1IAfdRB1fZQoaAZoCWgPQwhdwMsMmz93wJSGlFKUaBVLt2gWR0BiWzmSyMUAdX2UKGgGaAloD0MI4Nv0Zz/ifsCUhpRSlGgVS1FoFkdAYn7tEXtSh3V9lChoBmgJaA9DCFsjgnGwbXnAlIaUUpRoFUu2aBZHQGKMaxPfsNV1fZQoaAZoCWgPQwgxzt+Ewlx4wJSGlFKUaBVLr2gWR0Bij5Yoy9EkdX2UKGgGaAloD0MIwHrct5p3eMCUhpRSlGgVSxFoFkdAYpXkFwDNhXV9lChoBmgJaA9DCOepDrl5JIPAlIaUUpRoFUtiaBZHQGKnu9nK4hF1fZQoaAZoCWgPQwjV6UDWUw9TwJSGlFKUaBVNLQFoFkdAYqkoOQQtjHV9lChoBmgJaA9DCDogCft2DIPAlIaUUpRoFUtNaBZHQGK1RQBPsRh1fZQoaAZoCWgPQwhdTgmIydp5wJSGlFKUaBVLCmgWR0BiuTTDwYtQdX2UKGgGaAloD0MIYFs//WcvfsCUhpRSlGgVS3VoFkdAYrsPS2H+InV9lChoBmgJaA9DCEkQroCCsnnAlIaUUpRoFUsKaBZHQGK+TvJA+px1fZQoaAZoCWgPQwivQzUlWa6CwJSGlFKUaBVLTGgWR0BixsslLOAzdX2UKGgGaAloD0MIIGCt2jVXd8CUhpRSlGgVSxhoFkdAYtBW6K+BYnV9lChoBmgJaA9DCL6/QXu1HYLAlIaUUpRoFUtDaBZHQGLTQiiZfD11fZQoaAZoCWgPQwjI7gIlxXKCwJSGlFKUaBVLjGgWR0Bi31c2R7qqdX2UKGgGaAloD0MI7ZxmgbaMd8CUhpRSlGgVS1VoFkdAYvBNxEORT3V9lChoBmgJaA9DCHu9++PdgYPAlIaUUpRoFUtiaBZHQGL33wCr92p1fZQoaAZoCWgPQwh23VuRGAqCwJSGlFKUaBVLSmgWR0Bi+WqebutwdX2UKGgGaAloD0MIaMu5FDfBgMCUhpRSlGgVS6NoFkdAYvuiYb83uXV9lChoBmgJaA9DCO/k02N7y4LAlIaUUpRoFUtNaBZHQGMXgmJFb3Z1fZQoaAZoCWgPQwiXjGMkO8N2wJSGlFKUaBVLdWgWR0BjJODFqBVddWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -3.8750679450988676, "std_reward": 4.440892098500626e-16, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T15:30:03.842278"}
|