File size: 1,215 Bytes
b99b14c
 
32d8ca8
6f5223f
32d8ca8
 
 
b99b14c
2566a25
 
 
 
 
 
 
 
 
de6b3d7
 
 
2566a25
de6b3d7
 
2566a25
9c83d9b
2566a25
 
9c83d9b
2566a25
f6d8e85
2566a25
9c83d9b
 
2566a25
 
 
d12b46a
e450099
 
 
d12b46a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
---
license: other
tags:
  - pytorch
  - stable-diffusion
  - stable-diffusion-diffusers
  - diffusers
---

# This is a Custom Diffusion model fine-tuned from the Stable Diffusion v1-4.

Custom Diffusion allows you to fine-tune text-to-image diffusion models, such as Stable Diffusion, given a few images of a new concept (~4-20). 

Here we give an example model fine-tuned using 5 images of a cat downloaded from UnSplash. The example code of inference is shown below.


## Example code of inference
```
git clone https://github.com/adobe-research/custom-diffusion
cd custom-diffusion

```
```python
from diffusers import StableDiffusionPipeline
from src import diffuser_training

device = 'cuda'
model_id = "CompVis/stable-diffusion-v1-4"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to(device)

diffuser_training.load_model(pipe.text_encoder, pipe.tokenizer, pipe.unet, 'custom_diffusion_cat.bin')

prompt = "<new1> cat swimming in a pool"
images = pipe(prompt, num_inference_steps=200, guidance_scale=6., eta=1.).images
```

<center>
<img src="https://huggingface.co/nupurkmr9/custom_diffusion_cat/resolve/main/cat.png" width="600" align="center" >
</center>