--- license: other --- # This is a Custom Diffusion model fine-tuned from the Stable Diffusion v1-4. Custom Diffusion allows you to fine-tune text-to-image diffusion models, such as Stable Diffusion, given a few images of a new concept (~4-20). Here we give an example model fine-tuned using 5 images of a cat downloaded from UnSplash. The example code of inference is shown below. ## Example code of inference ```python import os import sys import torch os.system("git clone https://github.com/adobe-research/custom-diffusion") sys.path.append("custom-diffusion") from diffusers import StableDiffusionPipeline from src import diffuser_training device = 'cuda' pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to(self.device) weight_path = 'custom_diffusion_cat.bin' diffuser_training.load_model(pipe.text_encoder, pipe.tokenizer, pipe.unet, weight_path, '') prompt = " cat swimming in a pool" images = pipe(prompt, num_inference_steps=200, guidance_scale=6., eta=1.).images ```