--- license: other tags: - pytorch - stable-diffusion - stable-diffusion-diffusers - diffusers --- # This is a Custom Diffusion model fine-tuned from the Stable Diffusion v1-4. Custom Diffusion allows you to fine-tune text-to-image diffusion models, such as Stable Diffusion, given a few images of a new concept (~4-20). Here we give an example model fine-tuned using 5 images of a cat downloaded from UnSplash. The example code of inference is shown below. ## Example code of inference ``` git clone https://github.com/adobe-research/custom-diffusion cd custom-diffusion ``` ```python from diffusers import StableDiffusionPipeline from src import diffuser_training device = 'cuda' model_id = "CompVis/stable-diffusion-v1-4" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to(device) diffuser_training.load_model(pipe.text_encoder, pipe.tokenizer, pipe.unet, 'custom_diffusion_cat.bin') prompt = " cat swimming in a pool" images = pipe(prompt, num_inference_steps=200, guidance_scale=6., eta=1.).images ```