Commit
•
318f5a3
1
Parent(s):
9c0400e
Convert weights and config
Browse files- convert_original_audioldm_to_diffusers.py +1015 -0
- model_index.json +28 -0
- run_conversion.sh +6 -0
- scheduler/scheduler_config.json +17 -0
- text_encoder/config.json +32 -0
- text_encoder/pytorch_model.bin +3 -0
- tokenizer/merges.txt +0 -0
- tokenizer/special_tokens_map.json +15 -0
- tokenizer/tokenizer.json +0 -0
- tokenizer/tokenizer_config.json +17 -0
- tokenizer/vocab.json +0 -0
- unet/config.json +56 -0
- unet/diffusion_pytorch_model.bin +3 -0
- vae/config.json +27 -0
- vae/diffusion_pytorch_model.bin +3 -0
- vocoder/config.json +50 -0
- vocoder/pytorch_model.bin +3 -0
convert_original_audioldm_to_diffusers.py
ADDED
@@ -0,0 +1,1015 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Conversion script for the AudioLDM checkpoints."""
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import re
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from transformers import (
|
22 |
+
AutoTokenizer,
|
23 |
+
ClapTextConfig,
|
24 |
+
ClapTextModelWithProjection,
|
25 |
+
SpeechT5HifiGan,
|
26 |
+
SpeechT5HifiGanConfig,
|
27 |
+
)
|
28 |
+
|
29 |
+
from diffusers import (
|
30 |
+
AudioLDMPipeline,
|
31 |
+
AutoencoderKL,
|
32 |
+
DDIMScheduler,
|
33 |
+
DPMSolverMultistepScheduler,
|
34 |
+
EulerAncestralDiscreteScheduler,
|
35 |
+
EulerDiscreteScheduler,
|
36 |
+
HeunDiscreteScheduler,
|
37 |
+
LMSDiscreteScheduler,
|
38 |
+
PNDMScheduler,
|
39 |
+
UNet2DConditionModel,
|
40 |
+
)
|
41 |
+
from diffusers.utils import is_omegaconf_available, is_safetensors_available
|
42 |
+
from diffusers.utils.import_utils import BACKENDS_MAPPING
|
43 |
+
|
44 |
+
|
45 |
+
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.shave_segments
|
46 |
+
def shave_segments(path, n_shave_prefix_segments=1):
|
47 |
+
"""
|
48 |
+
Removes segments. Positive values shave the first segments, negative shave the last segments.
|
49 |
+
"""
|
50 |
+
if n_shave_prefix_segments >= 0:
|
51 |
+
return ".".join(path.split(".")[n_shave_prefix_segments:])
|
52 |
+
else:
|
53 |
+
return ".".join(path.split(".")[:n_shave_prefix_segments])
|
54 |
+
|
55 |
+
|
56 |
+
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_resnet_paths
|
57 |
+
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
|
58 |
+
"""
|
59 |
+
Updates paths inside resnets to the new naming scheme (local renaming)
|
60 |
+
"""
|
61 |
+
mapping = []
|
62 |
+
for old_item in old_list:
|
63 |
+
new_item = old_item.replace("in_layers.0", "norm1")
|
64 |
+
new_item = new_item.replace("in_layers.2", "conv1")
|
65 |
+
|
66 |
+
new_item = new_item.replace("out_layers.0", "norm2")
|
67 |
+
new_item = new_item.replace("out_layers.3", "conv2")
|
68 |
+
|
69 |
+
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
|
70 |
+
new_item = new_item.replace("skip_connection", "conv_shortcut")
|
71 |
+
|
72 |
+
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
73 |
+
|
74 |
+
mapping.append({"old": old_item, "new": new_item})
|
75 |
+
|
76 |
+
return mapping
|
77 |
+
|
78 |
+
|
79 |
+
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_vae_resnet_paths
|
80 |
+
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
|
81 |
+
"""
|
82 |
+
Updates paths inside resnets to the new naming scheme (local renaming)
|
83 |
+
"""
|
84 |
+
mapping = []
|
85 |
+
for old_item in old_list:
|
86 |
+
new_item = old_item
|
87 |
+
|
88 |
+
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
|
89 |
+
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
90 |
+
|
91 |
+
mapping.append({"old": old_item, "new": new_item})
|
92 |
+
|
93 |
+
return mapping
|
94 |
+
|
95 |
+
|
96 |
+
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_attention_paths
|
97 |
+
def renew_attention_paths(old_list):
|
98 |
+
"""
|
99 |
+
Updates paths inside attentions to the new naming scheme (local renaming)
|
100 |
+
"""
|
101 |
+
mapping = []
|
102 |
+
for old_item in old_list:
|
103 |
+
new_item = old_item
|
104 |
+
|
105 |
+
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
|
106 |
+
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
|
107 |
+
|
108 |
+
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
|
109 |
+
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
|
110 |
+
|
111 |
+
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
112 |
+
|
113 |
+
mapping.append({"old": old_item, "new": new_item})
|
114 |
+
|
115 |
+
return mapping
|
116 |
+
|
117 |
+
|
118 |
+
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_vae_attention_paths
|
119 |
+
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
|
120 |
+
"""
|
121 |
+
Updates paths inside attentions to the new naming scheme (local renaming)
|
122 |
+
"""
|
123 |
+
mapping = []
|
124 |
+
for old_item in old_list:
|
125 |
+
new_item = old_item
|
126 |
+
|
127 |
+
new_item = new_item.replace("norm.weight", "group_norm.weight")
|
128 |
+
new_item = new_item.replace("norm.bias", "group_norm.bias")
|
129 |
+
|
130 |
+
new_item = new_item.replace("q.weight", "query.weight")
|
131 |
+
new_item = new_item.replace("q.bias", "query.bias")
|
132 |
+
|
133 |
+
new_item = new_item.replace("k.weight", "key.weight")
|
134 |
+
new_item = new_item.replace("k.bias", "key.bias")
|
135 |
+
|
136 |
+
new_item = new_item.replace("v.weight", "value.weight")
|
137 |
+
new_item = new_item.replace("v.bias", "value.bias")
|
138 |
+
|
139 |
+
new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
|
140 |
+
new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
|
141 |
+
|
142 |
+
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
143 |
+
|
144 |
+
mapping.append({"old": old_item, "new": new_item})
|
145 |
+
|
146 |
+
return mapping
|
147 |
+
|
148 |
+
|
149 |
+
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.assign_to_checkpoint
|
150 |
+
def assign_to_checkpoint(
|
151 |
+
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
|
152 |
+
):
|
153 |
+
"""
|
154 |
+
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
|
155 |
+
attention layers, and takes into account additional replacements that may arise.
|
156 |
+
|
157 |
+
Assigns the weights to the new checkpoint.
|
158 |
+
"""
|
159 |
+
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
|
160 |
+
|
161 |
+
# Splits the attention layers into three variables.
|
162 |
+
if attention_paths_to_split is not None:
|
163 |
+
for path, path_map in attention_paths_to_split.items():
|
164 |
+
old_tensor = old_checkpoint[path]
|
165 |
+
channels = old_tensor.shape[0] // 3
|
166 |
+
|
167 |
+
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
|
168 |
+
|
169 |
+
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
|
170 |
+
|
171 |
+
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
|
172 |
+
query, key, value = old_tensor.split(channels // num_heads, dim=1)
|
173 |
+
|
174 |
+
checkpoint[path_map["query"]] = query.reshape(target_shape)
|
175 |
+
checkpoint[path_map["key"]] = key.reshape(target_shape)
|
176 |
+
checkpoint[path_map["value"]] = value.reshape(target_shape)
|
177 |
+
|
178 |
+
for path in paths:
|
179 |
+
new_path = path["new"]
|
180 |
+
|
181 |
+
# These have already been assigned
|
182 |
+
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
|
183 |
+
continue
|
184 |
+
|
185 |
+
# Global renaming happens here
|
186 |
+
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
|
187 |
+
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
|
188 |
+
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
|
189 |
+
|
190 |
+
if additional_replacements is not None:
|
191 |
+
for replacement in additional_replacements:
|
192 |
+
new_path = new_path.replace(replacement["old"], replacement["new"])
|
193 |
+
|
194 |
+
# proj_attn.weight has to be converted from conv 1D to linear
|
195 |
+
if "proj_attn.weight" in new_path:
|
196 |
+
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
|
197 |
+
else:
|
198 |
+
checkpoint[new_path] = old_checkpoint[path["old"]]
|
199 |
+
|
200 |
+
|
201 |
+
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.conv_attn_to_linear
|
202 |
+
def conv_attn_to_linear(checkpoint):
|
203 |
+
keys = list(checkpoint.keys())
|
204 |
+
attn_keys = ["query.weight", "key.weight", "value.weight"]
|
205 |
+
for key in keys:
|
206 |
+
if ".".join(key.split(".")[-2:]) in attn_keys:
|
207 |
+
if checkpoint[key].ndim > 2:
|
208 |
+
checkpoint[key] = checkpoint[key][:, :, 0, 0]
|
209 |
+
elif "proj_attn.weight" in key:
|
210 |
+
if checkpoint[key].ndim > 2:
|
211 |
+
checkpoint[key] = checkpoint[key][:, :, 0]
|
212 |
+
|
213 |
+
|
214 |
+
def create_unet_diffusers_config(original_config, image_size: int):
|
215 |
+
"""
|
216 |
+
Creates a UNet config for diffusers based on the config of the original AudioLDM model.
|
217 |
+
"""
|
218 |
+
unet_params = original_config.model.params.unet_config.params
|
219 |
+
vae_params = original_config.model.params.first_stage_config.params.ddconfig
|
220 |
+
|
221 |
+
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
|
222 |
+
|
223 |
+
down_block_types = []
|
224 |
+
resolution = 1
|
225 |
+
for i in range(len(block_out_channels)):
|
226 |
+
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D"
|
227 |
+
down_block_types.append(block_type)
|
228 |
+
if i != len(block_out_channels) - 1:
|
229 |
+
resolution *= 2
|
230 |
+
|
231 |
+
up_block_types = []
|
232 |
+
for i in range(len(block_out_channels)):
|
233 |
+
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
|
234 |
+
up_block_types.append(block_type)
|
235 |
+
resolution //= 2
|
236 |
+
|
237 |
+
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
|
238 |
+
|
239 |
+
cross_attention_dim = (
|
240 |
+
unet_params.cross_attention_dim if "cross_attention_dim" in unet_params else block_out_channels
|
241 |
+
)
|
242 |
+
|
243 |
+
class_embed_type = "simple_projection" if "extra_film_condition_dim" in unet_params else None
|
244 |
+
projection_class_embeddings_input_dim = (
|
245 |
+
unet_params.extra_film_condition_dim if "extra_film_condition_dim" in unet_params else None
|
246 |
+
)
|
247 |
+
class_embeddings_concat = unet_params.extra_film_use_concat if "extra_film_use_concat" in unet_params else None
|
248 |
+
|
249 |
+
config = {
|
250 |
+
"sample_size": image_size // vae_scale_factor,
|
251 |
+
"in_channels": unet_params.in_channels,
|
252 |
+
"out_channels": unet_params.out_channels,
|
253 |
+
"down_block_types": tuple(down_block_types),
|
254 |
+
"up_block_types": tuple(up_block_types),
|
255 |
+
"block_out_channels": tuple(block_out_channels),
|
256 |
+
"layers_per_block": unet_params.num_res_blocks,
|
257 |
+
"cross_attention_dim": cross_attention_dim,
|
258 |
+
"class_embed_type": class_embed_type,
|
259 |
+
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
|
260 |
+
"class_embeddings_concat": class_embeddings_concat,
|
261 |
+
}
|
262 |
+
|
263 |
+
return config
|
264 |
+
|
265 |
+
|
266 |
+
# Adapted from diffusers.pipelines.stable_diffusion.convert_from_ckpt.create_vae_diffusers_config
|
267 |
+
def create_vae_diffusers_config(original_config, checkpoint, image_size: int):
|
268 |
+
"""
|
269 |
+
Creates a VAE config for diffusers based on the config of the original AudioLDM model. Compared to the original
|
270 |
+
Stable Diffusion conversion, this function passes a *learnt* VAE scaling factor to the diffusers VAE.
|
271 |
+
"""
|
272 |
+
vae_params = original_config.model.params.first_stage_config.params.ddconfig
|
273 |
+
_ = original_config.model.params.first_stage_config.params.embed_dim
|
274 |
+
|
275 |
+
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
|
276 |
+
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
|
277 |
+
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
|
278 |
+
|
279 |
+
scaling_factor = checkpoint["scale_factor"] if "scale_by_std" in original_config.model.params else 0.18215
|
280 |
+
|
281 |
+
config = {
|
282 |
+
"sample_size": image_size,
|
283 |
+
"in_channels": vae_params.in_channels,
|
284 |
+
"out_channels": vae_params.out_ch,
|
285 |
+
"down_block_types": tuple(down_block_types),
|
286 |
+
"up_block_types": tuple(up_block_types),
|
287 |
+
"block_out_channels": tuple(block_out_channels),
|
288 |
+
"latent_channels": vae_params.z_channels,
|
289 |
+
"layers_per_block": vae_params.num_res_blocks,
|
290 |
+
"scaling_factor": float(scaling_factor),
|
291 |
+
}
|
292 |
+
return config
|
293 |
+
|
294 |
+
|
295 |
+
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.create_diffusers_schedular
|
296 |
+
def create_diffusers_schedular(original_config):
|
297 |
+
schedular = DDIMScheduler(
|
298 |
+
num_train_timesteps=original_config.model.params.timesteps,
|
299 |
+
beta_start=original_config.model.params.linear_start,
|
300 |
+
beta_end=original_config.model.params.linear_end,
|
301 |
+
beta_schedule="scaled_linear",
|
302 |
+
)
|
303 |
+
return schedular
|
304 |
+
|
305 |
+
|
306 |
+
# Adapted from diffusers.pipelines.stable_diffusion.convert_from_ckpt.convert_ldm_unet_checkpoint
|
307 |
+
def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False):
|
308 |
+
"""
|
309 |
+
Takes a state dict and a config, and returns a converted checkpoint. Compared to the original Stable Diffusion
|
310 |
+
conversion, this function additionally converts the learnt film embedding linear layer.
|
311 |
+
"""
|
312 |
+
|
313 |
+
# extract state_dict for UNet
|
314 |
+
unet_state_dict = {}
|
315 |
+
keys = list(checkpoint.keys())
|
316 |
+
|
317 |
+
unet_key = "model.diffusion_model."
|
318 |
+
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
|
319 |
+
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
|
320 |
+
print(f"Checkpoint {path} has both EMA and non-EMA weights.")
|
321 |
+
print(
|
322 |
+
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
|
323 |
+
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
|
324 |
+
)
|
325 |
+
for key in keys:
|
326 |
+
if key.startswith("model.diffusion_model"):
|
327 |
+
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
|
328 |
+
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
|
329 |
+
else:
|
330 |
+
if sum(k.startswith("model_ema") for k in keys) > 100:
|
331 |
+
print(
|
332 |
+
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
|
333 |
+
" weights (usually better for inference), please make sure to add the `--extract_ema` flag."
|
334 |
+
)
|
335 |
+
|
336 |
+
for key in keys:
|
337 |
+
if key.startswith(unet_key):
|
338 |
+
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
|
339 |
+
|
340 |
+
new_checkpoint = {}
|
341 |
+
|
342 |
+
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
|
343 |
+
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
|
344 |
+
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
|
345 |
+
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
|
346 |
+
|
347 |
+
new_checkpoint["class_embedding.weight"] = unet_state_dict["film_emb.weight"]
|
348 |
+
new_checkpoint["class_embedding.bias"] = unet_state_dict["film_emb.bias"]
|
349 |
+
|
350 |
+
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
|
351 |
+
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
|
352 |
+
|
353 |
+
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
|
354 |
+
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
|
355 |
+
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
|
356 |
+
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
|
357 |
+
|
358 |
+
# Retrieves the keys for the input blocks only
|
359 |
+
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
|
360 |
+
input_blocks = {
|
361 |
+
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
|
362 |
+
for layer_id in range(num_input_blocks)
|
363 |
+
}
|
364 |
+
|
365 |
+
# Retrieves the keys for the middle blocks only
|
366 |
+
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
|
367 |
+
middle_blocks = {
|
368 |
+
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
|
369 |
+
for layer_id in range(num_middle_blocks)
|
370 |
+
}
|
371 |
+
|
372 |
+
# Retrieves the keys for the output blocks only
|
373 |
+
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
|
374 |
+
output_blocks = {
|
375 |
+
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
|
376 |
+
for layer_id in range(num_output_blocks)
|
377 |
+
}
|
378 |
+
|
379 |
+
for i in range(1, num_input_blocks):
|
380 |
+
block_id = (i - 1) // (config["layers_per_block"] + 1)
|
381 |
+
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
|
382 |
+
|
383 |
+
resnets = [
|
384 |
+
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
|
385 |
+
]
|
386 |
+
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
|
387 |
+
|
388 |
+
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
|
389 |
+
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
|
390 |
+
f"input_blocks.{i}.0.op.weight"
|
391 |
+
)
|
392 |
+
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
|
393 |
+
f"input_blocks.{i}.0.op.bias"
|
394 |
+
)
|
395 |
+
|
396 |
+
paths = renew_resnet_paths(resnets)
|
397 |
+
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
|
398 |
+
assign_to_checkpoint(
|
399 |
+
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
400 |
+
)
|
401 |
+
|
402 |
+
if len(attentions):
|
403 |
+
paths = renew_attention_paths(attentions)
|
404 |
+
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
|
405 |
+
assign_to_checkpoint(
|
406 |
+
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
407 |
+
)
|
408 |
+
|
409 |
+
resnet_0 = middle_blocks[0]
|
410 |
+
attentions = middle_blocks[1]
|
411 |
+
resnet_1 = middle_blocks[2]
|
412 |
+
|
413 |
+
resnet_0_paths = renew_resnet_paths(resnet_0)
|
414 |
+
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
|
415 |
+
|
416 |
+
resnet_1_paths = renew_resnet_paths(resnet_1)
|
417 |
+
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
|
418 |
+
|
419 |
+
attentions_paths = renew_attention_paths(attentions)
|
420 |
+
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
|
421 |
+
assign_to_checkpoint(
|
422 |
+
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
423 |
+
)
|
424 |
+
|
425 |
+
for i in range(num_output_blocks):
|
426 |
+
block_id = i // (config["layers_per_block"] + 1)
|
427 |
+
layer_in_block_id = i % (config["layers_per_block"] + 1)
|
428 |
+
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
|
429 |
+
output_block_list = {}
|
430 |
+
|
431 |
+
for layer in output_block_layers:
|
432 |
+
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
|
433 |
+
if layer_id in output_block_list:
|
434 |
+
output_block_list[layer_id].append(layer_name)
|
435 |
+
else:
|
436 |
+
output_block_list[layer_id] = [layer_name]
|
437 |
+
|
438 |
+
if len(output_block_list) > 1:
|
439 |
+
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
|
440 |
+
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
|
441 |
+
|
442 |
+
resnet_0_paths = renew_resnet_paths(resnets)
|
443 |
+
paths = renew_resnet_paths(resnets)
|
444 |
+
|
445 |
+
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
|
446 |
+
assign_to_checkpoint(
|
447 |
+
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
448 |
+
)
|
449 |
+
|
450 |
+
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
|
451 |
+
if ["conv.bias", "conv.weight"] in output_block_list.values():
|
452 |
+
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
|
453 |
+
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
|
454 |
+
f"output_blocks.{i}.{index}.conv.weight"
|
455 |
+
]
|
456 |
+
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
|
457 |
+
f"output_blocks.{i}.{index}.conv.bias"
|
458 |
+
]
|
459 |
+
|
460 |
+
# Clear attentions as they have been attributed above.
|
461 |
+
if len(attentions) == 2:
|
462 |
+
attentions = []
|
463 |
+
|
464 |
+
if len(attentions):
|
465 |
+
paths = renew_attention_paths(attentions)
|
466 |
+
meta_path = {
|
467 |
+
"old": f"output_blocks.{i}.1",
|
468 |
+
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
|
469 |
+
}
|
470 |
+
assign_to_checkpoint(
|
471 |
+
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
472 |
+
)
|
473 |
+
else:
|
474 |
+
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
|
475 |
+
for path in resnet_0_paths:
|
476 |
+
old_path = ".".join(["output_blocks", str(i), path["old"]])
|
477 |
+
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
|
478 |
+
|
479 |
+
new_checkpoint[new_path] = unet_state_dict[old_path]
|
480 |
+
|
481 |
+
return new_checkpoint
|
482 |
+
|
483 |
+
|
484 |
+
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.convert_ldm_vae_checkpoint
|
485 |
+
def convert_ldm_vae_checkpoint(checkpoint, config):
|
486 |
+
# extract state dict for VAE
|
487 |
+
vae_state_dict = {}
|
488 |
+
vae_key = "first_stage_model."
|
489 |
+
keys = list(checkpoint.keys())
|
490 |
+
for key in keys:
|
491 |
+
if key.startswith(vae_key):
|
492 |
+
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
|
493 |
+
|
494 |
+
new_checkpoint = {}
|
495 |
+
|
496 |
+
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
|
497 |
+
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
|
498 |
+
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
|
499 |
+
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
|
500 |
+
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
|
501 |
+
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
|
502 |
+
|
503 |
+
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
|
504 |
+
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
|
505 |
+
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
|
506 |
+
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
|
507 |
+
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
|
508 |
+
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
|
509 |
+
|
510 |
+
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
|
511 |
+
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
|
512 |
+
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
|
513 |
+
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
|
514 |
+
|
515 |
+
# Retrieves the keys for the encoder down blocks only
|
516 |
+
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
|
517 |
+
down_blocks = {
|
518 |
+
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
|
519 |
+
}
|
520 |
+
|
521 |
+
# Retrieves the keys for the decoder up blocks only
|
522 |
+
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
|
523 |
+
up_blocks = {
|
524 |
+
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
|
525 |
+
}
|
526 |
+
|
527 |
+
for i in range(num_down_blocks):
|
528 |
+
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
|
529 |
+
|
530 |
+
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
|
531 |
+
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
|
532 |
+
f"encoder.down.{i}.downsample.conv.weight"
|
533 |
+
)
|
534 |
+
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
|
535 |
+
f"encoder.down.{i}.downsample.conv.bias"
|
536 |
+
)
|
537 |
+
|
538 |
+
paths = renew_vae_resnet_paths(resnets)
|
539 |
+
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
|
540 |
+
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
541 |
+
|
542 |
+
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
|
543 |
+
num_mid_res_blocks = 2
|
544 |
+
for i in range(1, num_mid_res_blocks + 1):
|
545 |
+
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
|
546 |
+
|
547 |
+
paths = renew_vae_resnet_paths(resnets)
|
548 |
+
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
549 |
+
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
550 |
+
|
551 |
+
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
|
552 |
+
paths = renew_vae_attention_paths(mid_attentions)
|
553 |
+
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
554 |
+
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
555 |
+
conv_attn_to_linear(new_checkpoint)
|
556 |
+
|
557 |
+
for i in range(num_up_blocks):
|
558 |
+
block_id = num_up_blocks - 1 - i
|
559 |
+
resnets = [
|
560 |
+
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
|
561 |
+
]
|
562 |
+
|
563 |
+
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
|
564 |
+
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
|
565 |
+
f"decoder.up.{block_id}.upsample.conv.weight"
|
566 |
+
]
|
567 |
+
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
|
568 |
+
f"decoder.up.{block_id}.upsample.conv.bias"
|
569 |
+
]
|
570 |
+
|
571 |
+
paths = renew_vae_resnet_paths(resnets)
|
572 |
+
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
|
573 |
+
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
574 |
+
|
575 |
+
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
|
576 |
+
num_mid_res_blocks = 2
|
577 |
+
for i in range(1, num_mid_res_blocks + 1):
|
578 |
+
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
|
579 |
+
|
580 |
+
paths = renew_vae_resnet_paths(resnets)
|
581 |
+
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
582 |
+
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
583 |
+
|
584 |
+
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
|
585 |
+
paths = renew_vae_attention_paths(mid_attentions)
|
586 |
+
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
587 |
+
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
588 |
+
conv_attn_to_linear(new_checkpoint)
|
589 |
+
return new_checkpoint
|
590 |
+
|
591 |
+
|
592 |
+
CLAP_KEYS_TO_MODIFY_MAPPING = {
|
593 |
+
"text_branch": "text_model",
|
594 |
+
"attn": "attention.self",
|
595 |
+
"self.proj": "output.dense",
|
596 |
+
"attention.self_mask": "attn_mask",
|
597 |
+
"mlp.fc1": "intermediate.dense",
|
598 |
+
"mlp.fc2": "output.dense",
|
599 |
+
"norm1": "layernorm_before",
|
600 |
+
"norm2": "layernorm_after",
|
601 |
+
"bn0": "batch_norm",
|
602 |
+
}
|
603 |
+
|
604 |
+
CLAP_KEYS_TO_IGNORE = ["text_transform"]
|
605 |
+
|
606 |
+
CLAP_EXPECTED_MISSING_KEYS = ["text_model.embeddings.token_type_ids"]
|
607 |
+
|
608 |
+
|
609 |
+
def convert_open_clap_checkpoint(checkpoint):
|
610 |
+
"""
|
611 |
+
Takes a state dict and returns a converted CLAP checkpoint.
|
612 |
+
"""
|
613 |
+
# extract state dict for CLAP text embedding model, discarding the audio component
|
614 |
+
model_state_dict = {}
|
615 |
+
model_key = "cond_stage_model.model.text_"
|
616 |
+
keys = list(checkpoint.keys())
|
617 |
+
for key in keys:
|
618 |
+
if key.startswith(model_key):
|
619 |
+
model_state_dict[key.replace(model_key, "text_")] = checkpoint.get(key)
|
620 |
+
|
621 |
+
new_checkpoint = {}
|
622 |
+
|
623 |
+
sequential_layers_pattern = r".*sequential.(\d+).*"
|
624 |
+
text_projection_pattern = r".*_projection.(\d+).*"
|
625 |
+
|
626 |
+
for key, value in model_state_dict.items():
|
627 |
+
# check if key should be ignored in mapping
|
628 |
+
if key.split(".")[0] in CLAP_KEYS_TO_IGNORE:
|
629 |
+
continue
|
630 |
+
|
631 |
+
# check if any key needs to be modified
|
632 |
+
for key_to_modify, new_key in CLAP_KEYS_TO_MODIFY_MAPPING.items():
|
633 |
+
if key_to_modify in key:
|
634 |
+
key = key.replace(key_to_modify, new_key)
|
635 |
+
|
636 |
+
if re.match(sequential_layers_pattern, key):
|
637 |
+
# replace sequential layers with list
|
638 |
+
sequential_layer = re.match(sequential_layers_pattern, key).group(1)
|
639 |
+
|
640 |
+
key = key.replace(f"sequential.{sequential_layer}.", f"layers.{int(sequential_layer)//3}.linear.")
|
641 |
+
elif re.match(text_projection_pattern, key):
|
642 |
+
projecton_layer = int(re.match(text_projection_pattern, key).group(1))
|
643 |
+
|
644 |
+
# Because in CLAP they use `nn.Sequential`...
|
645 |
+
transformers_projection_layer = 1 if projecton_layer == 0 else 2
|
646 |
+
|
647 |
+
key = key.replace(f"_projection.{projecton_layer}.", f"_projection.linear{transformers_projection_layer}.")
|
648 |
+
|
649 |
+
if "audio" and "qkv" in key:
|
650 |
+
# split qkv into query key and value
|
651 |
+
mixed_qkv = value
|
652 |
+
qkv_dim = mixed_qkv.size(0) // 3
|
653 |
+
|
654 |
+
query_layer = mixed_qkv[:qkv_dim]
|
655 |
+
key_layer = mixed_qkv[qkv_dim : qkv_dim * 2]
|
656 |
+
value_layer = mixed_qkv[qkv_dim * 2 :]
|
657 |
+
|
658 |
+
new_checkpoint[key.replace("qkv", "query")] = query_layer
|
659 |
+
new_checkpoint[key.replace("qkv", "key")] = key_layer
|
660 |
+
new_checkpoint[key.replace("qkv", "value")] = value_layer
|
661 |
+
else:
|
662 |
+
new_checkpoint[key] = value
|
663 |
+
|
664 |
+
return new_checkpoint
|
665 |
+
|
666 |
+
|
667 |
+
def create_transformers_vocoder_config(original_config):
|
668 |
+
"""
|
669 |
+
Creates a config for transformers SpeechT5HifiGan based on the config of the vocoder model.
|
670 |
+
"""
|
671 |
+
vocoder_params = original_config.model.params.vocoder_config.params
|
672 |
+
|
673 |
+
config = {
|
674 |
+
"model_in_dim": vocoder_params.num_mels,
|
675 |
+
"sampling_rate": vocoder_params.sampling_rate,
|
676 |
+
"upsample_initial_channel": vocoder_params.upsample_initial_channel,
|
677 |
+
"upsample_rates": list(vocoder_params.upsample_rates),
|
678 |
+
"upsample_kernel_sizes": list(vocoder_params.upsample_kernel_sizes),
|
679 |
+
"resblock_kernel_sizes": list(vocoder_params.resblock_kernel_sizes),
|
680 |
+
"resblock_dilation_sizes": [
|
681 |
+
list(resblock_dilation) for resblock_dilation in vocoder_params.resblock_dilation_sizes
|
682 |
+
],
|
683 |
+
"normalize_before": False,
|
684 |
+
}
|
685 |
+
|
686 |
+
return config
|
687 |
+
|
688 |
+
|
689 |
+
def convert_hifigan_checkpoint(checkpoint, config):
|
690 |
+
"""
|
691 |
+
Takes a state dict and config, and returns a converted HiFiGAN vocoder checkpoint.
|
692 |
+
"""
|
693 |
+
# extract state dict for vocoder
|
694 |
+
vocoder_state_dict = {}
|
695 |
+
vocoder_key = "first_stage_model.vocoder."
|
696 |
+
keys = list(checkpoint.keys())
|
697 |
+
for key in keys:
|
698 |
+
if key.startswith(vocoder_key):
|
699 |
+
vocoder_state_dict[key.replace(vocoder_key, "")] = checkpoint.get(key)
|
700 |
+
|
701 |
+
# fix upsampler keys, everything else is correct already
|
702 |
+
for i in range(len(config.upsample_rates)):
|
703 |
+
vocoder_state_dict[f"upsampler.{i}.weight"] = vocoder_state_dict.pop(f"ups.{i}.weight")
|
704 |
+
vocoder_state_dict[f"upsampler.{i}.bias"] = vocoder_state_dict.pop(f"ups.{i}.bias")
|
705 |
+
|
706 |
+
if not config.normalize_before:
|
707 |
+
# if we don't set normalize_before then these variables are unused, so we set them to their initialised values
|
708 |
+
vocoder_state_dict["mean"] = torch.zeros(config.model_in_dim)
|
709 |
+
vocoder_state_dict["scale"] = torch.ones(config.model_in_dim)
|
710 |
+
|
711 |
+
return vocoder_state_dict
|
712 |
+
|
713 |
+
|
714 |
+
# Adapted from https://huggingface.co/spaces/haoheliu/audioldm-text-to-audio-generation/blob/84a0384742a22bd80c44e903e241f0623e874f1d/audioldm/utils.py#L72-L73
|
715 |
+
DEFAULT_CONFIG = {
|
716 |
+
"model": {
|
717 |
+
"params": {
|
718 |
+
"linear_start": 0.0015,
|
719 |
+
"linear_end": 0.0195,
|
720 |
+
"timesteps": 1000,
|
721 |
+
"channels": 8,
|
722 |
+
"scale_by_std": True,
|
723 |
+
"unet_config": {
|
724 |
+
"target": "audioldm.latent_diffusion.openaimodel.UNetModel",
|
725 |
+
"params": {
|
726 |
+
"extra_film_condition_dim": 512,
|
727 |
+
"extra_film_use_concat": True,
|
728 |
+
"in_channels": 8,
|
729 |
+
"out_channels": 8,
|
730 |
+
"model_channels": 256,
|
731 |
+
"attention_resolutions": [8, 4, 2],
|
732 |
+
"num_res_blocks": 2,
|
733 |
+
"channel_mult": [1, 2, 3, 5],
|
734 |
+
"num_head_channels": 64,
|
735 |
+
},
|
736 |
+
},
|
737 |
+
"first_stage_config": {
|
738 |
+
"target": "audioldm.variational_autoencoder.autoencoder.AutoencoderKL",
|
739 |
+
"params": {
|
740 |
+
"embed_dim": 8,
|
741 |
+
"ddconfig": {
|
742 |
+
"z_channels": 8,
|
743 |
+
"resolution": 256,
|
744 |
+
"in_channels": 1,
|
745 |
+
"out_ch": 1,
|
746 |
+
"ch": 128,
|
747 |
+
"ch_mult": [1, 2, 4],
|
748 |
+
"num_res_blocks": 2,
|
749 |
+
},
|
750 |
+
},
|
751 |
+
},
|
752 |
+
"vocoder_config": {
|
753 |
+
"target": "audioldm.first_stage_model.vocoder",
|
754 |
+
"params": {
|
755 |
+
"upsample_rates": [5, 4, 2, 2, 2],
|
756 |
+
"upsample_kernel_sizes": [16, 16, 8, 4, 4],
|
757 |
+
"upsample_initial_channel": 1024,
|
758 |
+
"resblock_kernel_sizes": [3, 7, 11],
|
759 |
+
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
760 |
+
"num_mels": 64,
|
761 |
+
"sampling_rate": 16000,
|
762 |
+
},
|
763 |
+
},
|
764 |
+
},
|
765 |
+
},
|
766 |
+
}
|
767 |
+
|
768 |
+
|
769 |
+
def load_pipeline_from_original_audioldm_ckpt(
|
770 |
+
checkpoint_path: str,
|
771 |
+
original_config_file: str = None,
|
772 |
+
image_size: int = 512,
|
773 |
+
prediction_type: str = None,
|
774 |
+
extract_ema: bool = False,
|
775 |
+
scheduler_type: str = "ddim",
|
776 |
+
num_in_channels: int = None,
|
777 |
+
device: str = None,
|
778 |
+
from_safetensors: bool = False,
|
779 |
+
) -> AudioLDMPipeline:
|
780 |
+
"""
|
781 |
+
Load an AudioLDM pipeline object from a `.ckpt`/`.safetensors` file and (ideally) a `.yaml` config file.
|
782 |
+
|
783 |
+
Although many of the arguments can be automatically inferred, some of these rely on brittle checks against the
|
784 |
+
global step count, which will likely fail for models that have undergone further fine-tuning. Therefore, it is
|
785 |
+
recommended that you override the default values and/or supply an `original_config_file` wherever possible.
|
786 |
+
|
787 |
+
:param checkpoint_path: Path to `.ckpt` file. :param original_config_file: Path to `.yaml` config file
|
788 |
+
corresponding to the original architecture.
|
789 |
+
If `None`, will be automatically instantiated based on default values.
|
790 |
+
:param image_size: The image size that the model was trained on. Use 512 for original AudioLDM checkpoints. :param
|
791 |
+
prediction_type: The prediction type that the model was trained on. Use `'epsilon'` for original
|
792 |
+
AudioLDM checkpoints.
|
793 |
+
:param num_in_channels: The number of input channels. If `None` number of input channels will be automatically
|
794 |
+
inferred.
|
795 |
+
:param scheduler_type: Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler",
|
796 |
+
"euler-ancestral", "dpm", "ddim"]`.
|
797 |
+
:param extract_ema: Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract
|
798 |
+
the EMA weights or not. Defaults to `False`. Pass `True` to extract the EMA weights. EMA weights usually
|
799 |
+
yield higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.
|
800 |
+
:param device: The device to use. Pass `None` to determine automatically. :param from_safetensors: If
|
801 |
+
`checkpoint_path` is in `safetensors` format, load checkpoint with safetensors
|
802 |
+
instead of PyTorch.
|
803 |
+
:return: An AudioLDMPipeline object representing the passed-in `.ckpt`/`.safetensors` file.
|
804 |
+
"""
|
805 |
+
|
806 |
+
if not is_omegaconf_available():
|
807 |
+
raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
|
808 |
+
|
809 |
+
from omegaconf import OmegaConf
|
810 |
+
|
811 |
+
if from_safetensors:
|
812 |
+
if not is_safetensors_available():
|
813 |
+
raise ValueError(BACKENDS_MAPPING["safetensors"][1])
|
814 |
+
|
815 |
+
from safetensors import safe_open
|
816 |
+
|
817 |
+
checkpoint = {}
|
818 |
+
with safe_open(checkpoint_path, framework="pt", device="cpu") as f:
|
819 |
+
for key in f.keys():
|
820 |
+
checkpoint[key] = f.get_tensor(key)
|
821 |
+
else:
|
822 |
+
if device is None:
|
823 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
824 |
+
checkpoint = torch.load(checkpoint_path, map_location=device)
|
825 |
+
else:
|
826 |
+
checkpoint = torch.load(checkpoint_path, map_location=device)
|
827 |
+
|
828 |
+
if "state_dict" in checkpoint:
|
829 |
+
checkpoint = checkpoint["state_dict"]
|
830 |
+
|
831 |
+
if original_config_file is None:
|
832 |
+
original_config = DEFAULT_CONFIG
|
833 |
+
original_config = OmegaConf.create(original_config)
|
834 |
+
else:
|
835 |
+
original_config = OmegaConf.load(original_config_file)
|
836 |
+
|
837 |
+
if num_in_channels is not None:
|
838 |
+
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels
|
839 |
+
|
840 |
+
if (
|
841 |
+
"parameterization" in original_config["model"]["params"]
|
842 |
+
and original_config["model"]["params"]["parameterization"] == "v"
|
843 |
+
):
|
844 |
+
if prediction_type is None:
|
845 |
+
prediction_type = "v_prediction"
|
846 |
+
else:
|
847 |
+
if prediction_type is None:
|
848 |
+
prediction_type = "epsilon"
|
849 |
+
|
850 |
+
if image_size is None:
|
851 |
+
image_size = 512
|
852 |
+
|
853 |
+
num_train_timesteps = original_config.model.params.timesteps
|
854 |
+
beta_start = original_config.model.params.linear_start
|
855 |
+
beta_end = original_config.model.params.linear_end
|
856 |
+
|
857 |
+
scheduler = DDIMScheduler(
|
858 |
+
beta_end=beta_end,
|
859 |
+
beta_schedule="scaled_linear",
|
860 |
+
beta_start=beta_start,
|
861 |
+
num_train_timesteps=num_train_timesteps,
|
862 |
+
steps_offset=1,
|
863 |
+
clip_sample=False,
|
864 |
+
set_alpha_to_one=False,
|
865 |
+
prediction_type=prediction_type,
|
866 |
+
)
|
867 |
+
# make sure scheduler works correctly with DDIM
|
868 |
+
scheduler.register_to_config(clip_sample=False)
|
869 |
+
|
870 |
+
if scheduler_type == "pndm":
|
871 |
+
config = dict(scheduler.config)
|
872 |
+
config["skip_prk_steps"] = True
|
873 |
+
scheduler = PNDMScheduler.from_config(config)
|
874 |
+
elif scheduler_type == "lms":
|
875 |
+
scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
|
876 |
+
elif scheduler_type == "heun":
|
877 |
+
scheduler = HeunDiscreteScheduler.from_config(scheduler.config)
|
878 |
+
elif scheduler_type == "euler":
|
879 |
+
scheduler = EulerDiscreteScheduler.from_config(scheduler.config)
|
880 |
+
elif scheduler_type == "euler-ancestral":
|
881 |
+
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config)
|
882 |
+
elif scheduler_type == "dpm":
|
883 |
+
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config)
|
884 |
+
elif scheduler_type == "ddim":
|
885 |
+
scheduler = scheduler
|
886 |
+
else:
|
887 |
+
raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!")
|
888 |
+
|
889 |
+
# Convert the UNet2DModel
|
890 |
+
unet_config = create_unet_diffusers_config(original_config, image_size=image_size)
|
891 |
+
unet = UNet2DConditionModel(**unet_config)
|
892 |
+
|
893 |
+
converted_unet_checkpoint = convert_ldm_unet_checkpoint(
|
894 |
+
checkpoint, unet_config, path=checkpoint_path, extract_ema=extract_ema
|
895 |
+
)
|
896 |
+
|
897 |
+
unet.load_state_dict(converted_unet_checkpoint)
|
898 |
+
|
899 |
+
# Convert the VAE model
|
900 |
+
vae_config = create_vae_diffusers_config(original_config, checkpoint=checkpoint, image_size=image_size)
|
901 |
+
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
|
902 |
+
|
903 |
+
vae = AutoencoderKL(**vae_config)
|
904 |
+
vae.load_state_dict(converted_vae_checkpoint)
|
905 |
+
|
906 |
+
# Convert the text model
|
907 |
+
# AudioLDM uses the same configuration and tokenizer as the original CLAP model
|
908 |
+
config = ClapTextConfig.from_pretrained("laion/clap-htsat-unfused")
|
909 |
+
tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused")
|
910 |
+
|
911 |
+
converted_text_model = convert_open_clap_checkpoint(checkpoint)
|
912 |
+
text_model = ClapTextModelWithProjection(config)
|
913 |
+
|
914 |
+
missing_keys, unexpected_keys = text_model.load_state_dict(converted_text_model, strict=False)
|
915 |
+
# we expect not to have token_type_ids in our original state dict so let's ignore them
|
916 |
+
missing_keys = list(set(missing_keys) - set(CLAP_EXPECTED_MISSING_KEYS))
|
917 |
+
|
918 |
+
if len(unexpected_keys) > 0:
|
919 |
+
raise ValueError(f"Unexpected keys when loading CLAP model: {unexpected_keys}")
|
920 |
+
|
921 |
+
if len(missing_keys) > 0:
|
922 |
+
raise ValueError(f"Missing keys when loading CLAP model: {missing_keys}")
|
923 |
+
|
924 |
+
# Convert the vocoder model
|
925 |
+
vocoder_config = create_transformers_vocoder_config(original_config)
|
926 |
+
vocoder_config = SpeechT5HifiGanConfig(**vocoder_config)
|
927 |
+
converted_vocoder_checkpoint = convert_hifigan_checkpoint(checkpoint, vocoder_config)
|
928 |
+
|
929 |
+
vocoder = SpeechT5HifiGan(vocoder_config)
|
930 |
+
vocoder.load_state_dict(converted_vocoder_checkpoint)
|
931 |
+
|
932 |
+
# Instantiate the diffusers pipeline
|
933 |
+
pipe = AudioLDMPipeline(
|
934 |
+
vae=vae,
|
935 |
+
text_encoder=text_model,
|
936 |
+
tokenizer=tokenizer,
|
937 |
+
unet=unet,
|
938 |
+
scheduler=scheduler,
|
939 |
+
vocoder=vocoder,
|
940 |
+
)
|
941 |
+
|
942 |
+
return pipe
|
943 |
+
|
944 |
+
|
945 |
+
if __name__ == "__main__":
|
946 |
+
parser = argparse.ArgumentParser()
|
947 |
+
|
948 |
+
parser.add_argument(
|
949 |
+
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
|
950 |
+
)
|
951 |
+
parser.add_argument(
|
952 |
+
"--original_config_file",
|
953 |
+
default=None,
|
954 |
+
type=str,
|
955 |
+
help="The YAML config file corresponding to the original architecture.",
|
956 |
+
)
|
957 |
+
parser.add_argument(
|
958 |
+
"--num_in_channels",
|
959 |
+
default=None,
|
960 |
+
type=int,
|
961 |
+
help="The number of input channels. If `None` number of input channels will be automatically inferred.",
|
962 |
+
)
|
963 |
+
parser.add_argument(
|
964 |
+
"--scheduler_type",
|
965 |
+
default="ddim",
|
966 |
+
type=str,
|
967 |
+
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']",
|
968 |
+
)
|
969 |
+
parser.add_argument(
|
970 |
+
"--image_size",
|
971 |
+
default=None,
|
972 |
+
type=int,
|
973 |
+
help=("The image size that the model was trained on."),
|
974 |
+
)
|
975 |
+
parser.add_argument(
|
976 |
+
"--prediction_type",
|
977 |
+
default=None,
|
978 |
+
type=str,
|
979 |
+
help=("The prediction type that the model was trained on."),
|
980 |
+
)
|
981 |
+
parser.add_argument(
|
982 |
+
"--extract_ema",
|
983 |
+
action="store_true",
|
984 |
+
help=(
|
985 |
+
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
|
986 |
+
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
|
987 |
+
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
|
988 |
+
),
|
989 |
+
)
|
990 |
+
parser.add_argument(
|
991 |
+
"--from_safetensors",
|
992 |
+
action="store_true",
|
993 |
+
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.",
|
994 |
+
)
|
995 |
+
parser.add_argument(
|
996 |
+
"--to_safetensors",
|
997 |
+
action="store_true",
|
998 |
+
help="Whether to store pipeline in safetensors format or not.",
|
999 |
+
)
|
1000 |
+
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
|
1001 |
+
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
|
1002 |
+
args = parser.parse_args()
|
1003 |
+
|
1004 |
+
pipe = load_pipeline_from_original_audioldm_ckpt(
|
1005 |
+
checkpoint_path=args.checkpoint_path,
|
1006 |
+
original_config_file=args.original_config_file,
|
1007 |
+
image_size=args.image_size,
|
1008 |
+
prediction_type=args.prediction_type,
|
1009 |
+
extract_ema=args.extract_ema,
|
1010 |
+
scheduler_type=args.scheduler_type,
|
1011 |
+
num_in_channels=args.num_in_channels,
|
1012 |
+
from_safetensors=args.from_safetensors,
|
1013 |
+
device=args.device,
|
1014 |
+
)
|
1015 |
+
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
|
model_index.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AudioLDMPipeline",
|
3 |
+
"_diffusers_version": "0.15.0.dev0",
|
4 |
+
"scheduler": [
|
5 |
+
"diffusers",
|
6 |
+
"DDIMScheduler"
|
7 |
+
],
|
8 |
+
"text_encoder": [
|
9 |
+
"transformers",
|
10 |
+
"ClapTextModelWithProjection"
|
11 |
+
],
|
12 |
+
"tokenizer": [
|
13 |
+
"transformers",
|
14 |
+
"RobertaTokenizerFast"
|
15 |
+
],
|
16 |
+
"unet": [
|
17 |
+
"diffusers",
|
18 |
+
"UNet2DConditionModel"
|
19 |
+
],
|
20 |
+
"vae": [
|
21 |
+
"diffusers",
|
22 |
+
"AutoencoderKL"
|
23 |
+
],
|
24 |
+
"vocoder": [
|
25 |
+
"transformers",
|
26 |
+
"SpeechT5HifiGan"
|
27 |
+
]
|
28 |
+
}
|
run_conversion.sh
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
python convert_original_audioldm_to_diffusers.py \
|
4 |
+
--checkpoint_path "/home/sanchit_huggingface_co/.cache/audioldm/audioldm-l-full.ckpt" \
|
5 |
+
--extract_ema \
|
6 |
+
--dump_path "./"
|
scheduler/scheduler_config.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "DDIMScheduler",
|
3 |
+
"_diffusers_version": "0.15.0.dev0",
|
4 |
+
"beta_end": 0.0195,
|
5 |
+
"beta_schedule": "scaled_linear",
|
6 |
+
"beta_start": 0.0015,
|
7 |
+
"clip_sample": false,
|
8 |
+
"clip_sample_range": 1.0,
|
9 |
+
"dynamic_thresholding_ratio": 0.995,
|
10 |
+
"num_train_timesteps": 1000,
|
11 |
+
"prediction_type": "epsilon",
|
12 |
+
"sample_max_value": 1.0,
|
13 |
+
"set_alpha_to_one": false,
|
14 |
+
"steps_offset": 1,
|
15 |
+
"thresholding": false,
|
16 |
+
"trained_betas": null
|
17 |
+
}
|
text_encoder/config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ClapTextModelWithProjection"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"fusion_hidden_size": 768,
|
10 |
+
"fusion_num_hidden_layers": 2,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_factor": 1.0,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"layer_norm_eps": 1e-12,
|
18 |
+
"max_position_embeddings": 514,
|
19 |
+
"model_type": "clap_text_model",
|
20 |
+
"num_attention_heads": 12,
|
21 |
+
"num_hidden_layers": 12,
|
22 |
+
"pad_token_id": 1,
|
23 |
+
"position_embedding_type": "absolute",
|
24 |
+
"projection_dim": 512,
|
25 |
+
"projection_hidden_act": "relu",
|
26 |
+
"projection_hidden_size": 768,
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.28.0.dev0",
|
29 |
+
"type_vocab_size": 1,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 50265
|
32 |
+
}
|
text_encoder/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0292e65e99024f2d21f0a59b718f0e4914546e4287e2dabdd2d7e4a95c169f7b
|
3 |
+
size 501284353
|
tokenizer/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": "<s>",
|
4 |
+
"clean_up_tokenization_spaces": true,
|
5 |
+
"cls_token": "<s>",
|
6 |
+
"eos_token": "</s>",
|
7 |
+
"errors": "replace",
|
8 |
+
"mask_token": "<mask>",
|
9 |
+
"model_max_length": 512,
|
10 |
+
"pad_token": "<pad>",
|
11 |
+
"processor_class": "ClapProcessor",
|
12 |
+
"sep_token": "</s>",
|
13 |
+
"special_tokens_map_file": null,
|
14 |
+
"tokenizer_class": "RobertaTokenizer",
|
15 |
+
"trim_offsets": true,
|
16 |
+
"unk_token": "<unk>"
|
17 |
+
}
|
tokenizer/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
unet/config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "UNet2DConditionModel",
|
3 |
+
"_diffusers_version": "0.15.0.dev0",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"attention_head_dim": 8,
|
6 |
+
"block_out_channels": [
|
7 |
+
256,
|
8 |
+
512,
|
9 |
+
768,
|
10 |
+
1280
|
11 |
+
],
|
12 |
+
"center_input_sample": false,
|
13 |
+
"class_embed_type": "simple_projection",
|
14 |
+
"class_embeddings_concat": true,
|
15 |
+
"conv_in_kernel": 3,
|
16 |
+
"conv_out_kernel": 3,
|
17 |
+
"cross_attention_dim": [
|
18 |
+
256,
|
19 |
+
512,
|
20 |
+
768,
|
21 |
+
1280
|
22 |
+
],
|
23 |
+
"down_block_types": [
|
24 |
+
"DownBlock2D",
|
25 |
+
"CrossAttnDownBlock2D",
|
26 |
+
"CrossAttnDownBlock2D",
|
27 |
+
"CrossAttnDownBlock2D"
|
28 |
+
],
|
29 |
+
"downsample_padding": 1,
|
30 |
+
"dual_cross_attention": false,
|
31 |
+
"flip_sin_to_cos": true,
|
32 |
+
"freq_shift": 0,
|
33 |
+
"in_channels": 8,
|
34 |
+
"layers_per_block": 2,
|
35 |
+
"mid_block_scale_factor": 1,
|
36 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
37 |
+
"norm_eps": 1e-05,
|
38 |
+
"norm_num_groups": 32,
|
39 |
+
"num_class_embeds": null,
|
40 |
+
"only_cross_attention": false,
|
41 |
+
"out_channels": 8,
|
42 |
+
"projection_class_embeddings_input_dim": 512,
|
43 |
+
"resnet_time_scale_shift": "default",
|
44 |
+
"sample_size": 128,
|
45 |
+
"time_cond_proj_dim": null,
|
46 |
+
"time_embedding_type": "positional",
|
47 |
+
"timestep_post_act": null,
|
48 |
+
"up_block_types": [
|
49 |
+
"CrossAttnUpBlock2D",
|
50 |
+
"CrossAttnUpBlock2D",
|
51 |
+
"CrossAttnUpBlock2D",
|
52 |
+
"UpBlock2D"
|
53 |
+
],
|
54 |
+
"upcast_attention": false,
|
55 |
+
"use_linear_projection": false
|
56 |
+
}
|
unet/diffusion_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:060bbc49e8afc88664d6871ef0dd465fc2788226a07315ab2d114b5c0ee6d8a5
|
3 |
+
size 2956840221
|
vae/config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AutoencoderKL",
|
3 |
+
"_diffusers_version": "0.15.0.dev0",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"block_out_channels": [
|
6 |
+
128,
|
7 |
+
256,
|
8 |
+
512
|
9 |
+
],
|
10 |
+
"down_block_types": [
|
11 |
+
"DownEncoderBlock2D",
|
12 |
+
"DownEncoderBlock2D",
|
13 |
+
"DownEncoderBlock2D"
|
14 |
+
],
|
15 |
+
"in_channels": 1,
|
16 |
+
"latent_channels": 8,
|
17 |
+
"layers_per_block": 2,
|
18 |
+
"norm_num_groups": 32,
|
19 |
+
"out_channels": 1,
|
20 |
+
"sample_size": 512,
|
21 |
+
"scaling_factor": 0.9654927849769592,
|
22 |
+
"up_block_types": [
|
23 |
+
"UpDecoderBlock2D",
|
24 |
+
"UpDecoderBlock2D",
|
25 |
+
"UpDecoderBlock2D"
|
26 |
+
]
|
27 |
+
}
|
vae/diffusion_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3fc8ccecb1849c8a23cd4f9dd959eb7aaa203cc010386288418dbc551cdaaf7
|
3 |
+
size 221586505
|
vocoder/config.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"SpeechT5HifiGan"
|
4 |
+
],
|
5 |
+
"initializer_range": 0.01,
|
6 |
+
"leaky_relu_slope": 0.1,
|
7 |
+
"model_in_dim": 64,
|
8 |
+
"model_type": "hifigan",
|
9 |
+
"normalize_before": false,
|
10 |
+
"resblock_dilation_sizes": [
|
11 |
+
[
|
12 |
+
1,
|
13 |
+
3,
|
14 |
+
5
|
15 |
+
],
|
16 |
+
[
|
17 |
+
1,
|
18 |
+
3,
|
19 |
+
5
|
20 |
+
],
|
21 |
+
[
|
22 |
+
1,
|
23 |
+
3,
|
24 |
+
5
|
25 |
+
]
|
26 |
+
],
|
27 |
+
"resblock_kernel_sizes": [
|
28 |
+
3,
|
29 |
+
7,
|
30 |
+
11
|
31 |
+
],
|
32 |
+
"sampling_rate": 16000,
|
33 |
+
"torch_dtype": "float32",
|
34 |
+
"transformers_version": "4.28.0.dev0",
|
35 |
+
"upsample_initial_channel": 1024,
|
36 |
+
"upsample_kernel_sizes": [
|
37 |
+
16,
|
38 |
+
16,
|
39 |
+
8,
|
40 |
+
4,
|
41 |
+
4
|
42 |
+
],
|
43 |
+
"upsample_rates": [
|
44 |
+
5,
|
45 |
+
4,
|
46 |
+
2,
|
47 |
+
2,
|
48 |
+
2
|
49 |
+
]
|
50 |
+
}
|
vocoder/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9fbefc2b31c85d1dabe98e53d09ac88039af411162a7e641040a9c2b5f62364
|
3 |
+
size 221120349
|