cwchang commited on
Commit
394d86b
1 Parent(s): 3a05d22

End of training

Browse files
README.md CHANGED
@@ -5,9 +5,36 @@ tags:
5
  - generated_from_trainer
6
  datasets:
7
  - wnut_17
 
 
 
 
 
8
  model-index:
9
  - name: ner_model
10
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -16,6 +43,12 @@ should probably proofread and complete it, then remove this comment. -->
16
  # ner_model
17
 
18
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.
 
 
 
 
 
 
19
 
20
  ## Model description
21
 
 
5
  - generated_from_trainer
6
  datasets:
7
  - wnut_17
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
  model-index:
14
  - name: ner_model
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: wnut_17
21
+ type: wnut_17
22
+ config: wnut_17
23
+ split: validation
24
+ args: wnut_17
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.7006578947368421
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.5095693779904307
32
+ - name: F1
33
+ type: f1
34
+ value: 0.590027700831025
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9553054866806535
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
  # ner_model
44
 
45
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.2586
48
+ - Precision: 0.7007
49
+ - Recall: 0.5096
50
+ - F1: 0.5900
51
+ - Accuracy: 0.9553
52
 
53
  ## Model description
54
 
all_results.json CHANGED
@@ -1,17 +1,17 @@
1
  {
2
  "epoch": 3.0,
3
- "eval_accuracy": 0.9877146528561972,
4
- "eval_f1": 0.9397145256087323,
5
- "eval_loss": 0.055851779878139496,
6
- "eval_precision": 0.9376675603217158,
7
- "eval_recall": 0.9417704476607203,
8
- "eval_runtime": 7.0625,
9
- "eval_samples": 3250,
10
- "eval_samples_per_second": 460.177,
11
- "eval_steps_per_second": 57.628,
12
- "train_loss": 0.044327347904964204,
13
- "train_runtime": 311.2643,
14
- "train_samples": 14041,
15
- "train_samples_per_second": 135.329,
16
- "train_steps_per_second": 16.925
17
  }
 
1
  {
2
  "epoch": 3.0,
3
+ "eval_accuracy": 0.9553054866806535,
4
+ "eval_f1": 0.590027700831025,
5
+ "eval_loss": 0.2586243450641632,
6
+ "eval_precision": 0.7006578947368421,
7
+ "eval_recall": 0.5095693779904307,
8
+ "eval_runtime": 1.8637,
9
+ "eval_samples": 1009,
10
+ "eval_samples_per_second": 541.382,
11
+ "eval_steps_per_second": 68.142,
12
+ "train_loss": 0.10290272581811044,
13
+ "train_runtime": 78.6134,
14
+ "train_samples": 3394,
15
+ "train_samples_per_second": 129.52,
16
+ "train_steps_per_second": 16.219
17
  }
eval_results.json CHANGED
@@ -1,12 +1,12 @@
1
  {
2
  "epoch": 3.0,
3
- "eval_accuracy": 0.9877146528561972,
4
- "eval_f1": 0.9397145256087323,
5
- "eval_loss": 0.055851779878139496,
6
- "eval_precision": 0.9376675603217158,
7
- "eval_recall": 0.9417704476607203,
8
- "eval_runtime": 7.0625,
9
- "eval_samples": 3250,
10
- "eval_samples_per_second": 460.177,
11
- "eval_steps_per_second": 57.628
12
  }
 
1
  {
2
  "epoch": 3.0,
3
+ "eval_accuracy": 0.9553054866806535,
4
+ "eval_f1": 0.590027700831025,
5
+ "eval_loss": 0.2586243450641632,
6
+ "eval_precision": 0.7006578947368421,
7
+ "eval_recall": 0.5095693779904307,
8
+ "eval_runtime": 1.8637,
9
+ "eval_samples": 1009,
10
+ "eval_samples_per_second": 541.382,
11
+ "eval_steps_per_second": 68.142
12
  }
runs/Dec04_10-55-16_3d86165b31b1/events.out.tfevents.1701687416.3d86165b31b1.1675.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b39ff7a4b14655bd107b91ceac330bb1aa4027f4f31c49bc3b0fe41193bff580
3
+ size 560
train_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
  "epoch": 3.0,
3
- "train_loss": 0.044327347904964204,
4
- "train_runtime": 311.2643,
5
- "train_samples": 14041,
6
- "train_samples_per_second": 135.329,
7
- "train_steps_per_second": 16.925
8
  }
 
1
  {
2
  "epoch": 3.0,
3
+ "train_loss": 0.10290272581811044,
4
+ "train_runtime": 78.6134,
5
+ "train_samples": 3394,
6
+ "train_samples_per_second": 129.52,
7
+ "train_steps_per_second": 16.219
8
  }
trainer_state.json CHANGED
@@ -3,87 +3,39 @@
3
  "best_model_checkpoint": null,
4
  "epoch": 3.0,
5
  "eval_steps": 500,
6
- "global_step": 5268,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
10
  "log_history": [
11
  {
12
- "epoch": 0.28,
13
- "learning_rate": 4.525436598329537e-05,
14
- "loss": 0.1662,
15
  "step": 500
16
  },
17
  {
18
- "epoch": 0.57,
19
- "learning_rate": 4.050873196659074e-05,
20
- "loss": 0.0736,
21
  "step": 1000
22
  },
23
- {
24
- "epoch": 0.85,
25
- "learning_rate": 3.5763097949886106e-05,
26
- "loss": 0.0629,
27
- "step": 1500
28
- },
29
- {
30
- "epoch": 1.14,
31
- "learning_rate": 3.1017463933181475e-05,
32
- "loss": 0.042,
33
- "step": 2000
34
- },
35
- {
36
- "epoch": 1.42,
37
- "learning_rate": 2.6271829916476843e-05,
38
- "loss": 0.028,
39
- "step": 2500
40
- },
41
- {
42
- "epoch": 1.71,
43
- "learning_rate": 2.152619589977221e-05,
44
- "loss": 0.0283,
45
- "step": 3000
46
- },
47
- {
48
- "epoch": 1.99,
49
- "learning_rate": 1.678056188306758e-05,
50
- "loss": 0.0244,
51
- "step": 3500
52
- },
53
- {
54
- "epoch": 2.28,
55
- "learning_rate": 1.2034927866362947e-05,
56
- "loss": 0.012,
57
- "step": 4000
58
- },
59
- {
60
- "epoch": 2.56,
61
- "learning_rate": 7.289293849658315e-06,
62
- "loss": 0.0112,
63
- "step": 4500
64
- },
65
- {
66
- "epoch": 2.85,
67
- "learning_rate": 2.5436598329536827e-06,
68
- "loss": 0.0135,
69
- "step": 5000
70
- },
71
  {
72
  "epoch": 3.0,
73
- "step": 5268,
74
- "total_flos": 445788652997016.0,
75
- "train_loss": 0.044327347904964204,
76
- "train_runtime": 311.2643,
77
- "train_samples_per_second": 135.329,
78
- "train_steps_per_second": 16.925
79
  }
80
  ],
81
  "logging_steps": 500,
82
- "max_steps": 5268,
83
  "num_input_tokens_seen": 0,
84
  "num_train_epochs": 3,
85
  "save_steps": 500,
86
- "total_flos": 445788652997016.0,
87
  "trial_name": null,
88
  "trial_params": null
89
  }
 
3
  "best_model_checkpoint": null,
4
  "epoch": 3.0,
5
  "eval_steps": 500,
6
+ "global_step": 1275,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
10
  "log_history": [
11
  {
12
+ "epoch": 1.18,
13
+ "learning_rate": 3.0392156862745097e-05,
14
+ "loss": 0.1847,
15
  "step": 500
16
  },
17
  {
18
+ "epoch": 2.35,
19
+ "learning_rate": 1.0784313725490197e-05,
20
+ "loss": 0.0585,
21
  "step": 1000
22
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  {
24
  "epoch": 3.0,
25
+ "step": 1275,
26
+ "total_flos": 127179336805920.0,
27
+ "train_loss": 0.10290272581811044,
28
+ "train_runtime": 78.6134,
29
+ "train_samples_per_second": 129.52,
30
+ "train_steps_per_second": 16.219
31
  }
32
  ],
33
  "logging_steps": 500,
34
+ "max_steps": 1275,
35
  "num_input_tokens_seen": 0,
36
  "num_train_epochs": 3,
37
  "save_steps": 500,
38
+ "total_flos": 127179336805920.0,
39
  "trial_name": null,
40
  "trial_params": null
41
  }