cydxg's picture
Upload extra needed files
a2fedce verified
raw
history blame
8.28 kB
import gradio as gr
import copy
import re
from threading import Thread
from transformers import TextIteratorStreamer
from qwen_vl_utils import process_vision_info
def _parse_text(text):
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = "<br></code></pre>"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "&lt;")
line = line.replace(">", "&gt;")
line = line.replace(" ", "&nbsp;")
line = line.replace("*", "&ast;")
line = line.replace("_", "&lowbar;")
line = line.replace("-", "&#45;")
line = line.replace(".", "&#46;")
line = line.replace("!", "&#33;")
line = line.replace("(", "&#40;")
line = line.replace(")", "&#41;")
line = line.replace("$", "&#36;")
lines[i] = "<br>" + line
text = "".join(lines)
return text
def _remove_image_special(text):
text = text.replace("<ref>", "").replace("</ref>", "")
return re.sub(r"<box>.*?(</box>|$)", "", text)
def is_video_file(filename):
video_extensions = [".mp4", ".avi", ".mkv", ".mov", ".wmv", ".flv", ".webm", ".mpeg"]
return any(filename.lower().endswith(ext) for ext in video_extensions)
def transform_messages(original_messages):
transformed_messages = []
for message in original_messages:
new_content = []
for item in message["content"]:
if "image" in item:
new_item = {"type": "image", "image": item["image"]}
elif "text" in item:
new_item = {"type": "text", "text": item["text"]}
elif "video" in item:
new_item = {"type": "video", "video": item["video"]}
else:
continue
new_content.append(new_item)
new_message = {"role": message["role"], "content": new_content}
transformed_messages.append(new_message)
return transformed_messages
def make_demo(model, processor):
def call_local_model(model, processor, messages):
messages = transform_messages(messages)
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt").to(model.device)
tokenizer = processor.tokenizer
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
gen_kwargs = {"max_new_tokens": 512, "streamer": streamer, **inputs}
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
generated_text = ""
for new_text in streamer:
generated_text += new_text
yield generated_text
def create_predict_fn():
def predict(_chatbot, task_history):
chat_query = _chatbot[-1][0]
query = task_history[-1][0]
if len(chat_query) == 0:
_chatbot.pop()
task_history.pop()
return _chatbot
print("User: " + _parse_text(query))
history_cp = copy.deepcopy(task_history)
full_response = ""
messages = []
content = []
for q, a in history_cp:
if isinstance(q, (tuple, list)):
if is_video_file(q[0]):
content.append({"video": f"file://{q[0]}"})
else:
content.append({"image": f"file://{q[0]}"})
else:
content.append({"text": q})
messages.append({"role": "user", "content": content})
messages.append({"role": "assistant", "content": [{"text": a}]})
content = []
messages.pop()
for response in call_local_model(model, processor, messages):
_chatbot[-1] = (_parse_text(chat_query), _remove_image_special(_parse_text(response)))
yield _chatbot
full_response = _parse_text(response)
task_history[-1] = (query, full_response)
print("Qwen-VL-Chat: " + _parse_text(full_response))
yield _chatbot
return predict
def create_regenerate_fn():
def regenerate(_chatbot, task_history):
if not task_history:
return _chatbot
item = task_history[-1]
if item[1] is None:
return _chatbot
task_history[-1] = (item[0], None)
chatbot_item = _chatbot.pop(-1)
if chatbot_item[0] is None:
_chatbot[-1] = (_chatbot[-1][0], None)
else:
_chatbot.append((chatbot_item[0], None))
_chatbot_gen = predict(_chatbot, task_history)
for _chatbot in _chatbot_gen:
yield _chatbot
return regenerate
predict = create_predict_fn()
regenerate = create_regenerate_fn()
def add_text(history, task_history, text):
task_text = text
history = history if history is not None else []
task_history = task_history if task_history is not None else []
history = history + [(_parse_text(text), None)]
task_history = task_history + [(task_text, None)]
return history, task_history, ""
def add_file(history, task_history, file):
history = history if history is not None else []
task_history = task_history if task_history is not None else []
history = history + [((file.name,), None)]
task_history = task_history + [((file.name,), None)]
return history, task_history
def reset_user_input():
return gr.update(value="")
def reset_state(task_history):
task_history.clear()
return []
with gr.Blocks() as demo:
gr.Markdown("""<center><font size=8>Qwen2-VL OpenVINO demo</center>""")
chatbot = gr.Chatbot(label="Qwen2-VL", elem_classes="control-height", height=500)
query = gr.Textbox(lines=2, label="Input")
task_history = gr.State([])
with gr.Row():
addfile_btn = gr.UploadButton("📁 Upload (上传文件)", file_types=["image", "video"])
submit_btn = gr.Button("🚀 Submit (发送)")
regen_btn = gr.Button("🤔️ Regenerate (重试)")
empty_bin = gr.Button("🧹 Clear History (清除历史)")
submit_btn.click(add_text, [chatbot, task_history, query], [chatbot, task_history]).then(
predict, [chatbot, task_history], [chatbot], show_progress=True
)
submit_btn.click(reset_user_input, [], [query])
empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True)
regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True)
addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True)
gr.Markdown(
"""\
<font size=2>Note: This demo is governed by the original license of Qwen2-VL. \
We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content, \
including hate speech, violence, pornography, deception, etc. \
(注:本演示受Qwen2-VL的许可协议限制。我们强烈建议,用户不应传播及不应允许他人传播以下内容,\
包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息。)"""
)
return demo