File size: 94,054 Bytes
6247296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import math
import warnings
import zlib
from typing import Callable, Iterator, List, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
from torch import nn

from transformers.cache_utils import EncoderDecoderCache

from transformers.generation.configuration_utils import GenerationConfig
from transformers.generation.logits_process import (
    LogitsProcessorList,
    SuppressTokensAtBeginLogitsProcessor,
    SuppressTokensLogitsProcessor,
    WhisperNoSpeechDetection,
    WhisperTimeStampLogitsProcessor,
)
from transformers.generation.stopping_criteria import StoppingCriteriaList
from transformers.modeling_outputs import BaseModelOutput
from transformers.utils import logging
from transformers.models.whisper.tokenization_whisper import TASK_IDS, TO_LANGUAGE_CODE


logger = logging.get_logger(__name__)


def _median_filter(inputs: torch.Tensor, filter_width: int) -> torch.Tensor:
    """
    Applies a median filter of width `filter_width` along the last dimension of the input.

    The `inputs` tensor is assumed to be 3- or 4-dimensional.
    """
    if filter_width <= 0 or filter_width % 2 != 1:
        raise ValueError("`filter_width` should be an odd number")

    pad_width = filter_width // 2
    if inputs.shape[-1] <= pad_width:
        return inputs

    # Pad the left and right edges.
    inputs = nn.functional.pad(inputs, (pad_width, pad_width, 0, 0), mode="reflect")

    # sort() is faster than torch.median (https://github.com/pytorch/pytorch/issues/51450)
    result = inputs.unfold(-1, filter_width, 1).sort()[0][..., pad_width]
    return result


def _dynamic_time_warping(matrix: np.ndarray):
    """
    Measures similarity between two temporal sequences: the input audio and the output tokens. Used to generate
    token-level timestamps.
    """
    output_length, input_length = matrix.shape
    cost = np.ones((output_length + 1, input_length + 1), dtype=np.float32) * np.inf
    trace = -np.ones((output_length + 1, input_length + 1), dtype=np.float32)

    cost[0, 0] = 0
    for j in range(1, input_length + 1):
        for i in range(1, output_length + 1):
            c0 = cost[i - 1, j - 1]
            c1 = cost[i - 1, j]
            c2 = cost[i, j - 1]

            if c0 < c1 and c0 < c2:
                c, t = c0, 0
            elif c1 < c0 and c1 < c2:
                c, t = c1, 1
            else:
                c, t = c2, 2

            cost[i, j] = matrix[i - 1, j - 1] + c
            trace[i, j] = t

    # backtrace
    i = trace.shape[0] - 1
    j = trace.shape[1] - 1
    trace[0, :] = 2
    trace[:, 0] = 1

    text_indices = []
    time_indices = []
    while i > 0 or j > 0:
        text_indices.append(i - 1)
        time_indices.append(j - 1)
        if trace[i, j] == 0:
            i -= 1
            j -= 1
        elif trace[i, j] == 1:
            i -= 1
        elif trace[i, j] == 2:
            j -= 1
        else:
            raise RuntimeError(
                f"Internal error in dynamic time warping. Unexpected trace[{i}, {j}]. Please file a bug report."
            )

    text_indices = np.array(text_indices)[::-1]
    time_indices = np.array(time_indices)[::-1]
    return text_indices, time_indices


def _get_attr_from_logit_processors(logits_processor, logit_processor_class, attribute_name):
    if logits_processor is not None:
        logit_processor = next((cls for cls in logits_processor if isinstance(cls, logit_processor_class)), None)
        if logit_processor:
            return getattr(logit_processor, attribute_name, None)
    return None


def _pad_to_max_length(
    current_segments,
    pad_token_id,
    device,
    padding_side="right",
    padding="longest",
    bos_token_tensor=None,
    cut_off_length=None,
):
    max_total_length = 0
    sequences = []

    if padding_side not in ["right", "left"]:
        raise ValueError(f"`padding_side` must be either 'right' or 'left', not {padding_side}")

    if padding not in ["longest", "max_length"]:
        raise ValueError(f"`padding` must be either 'longest' or 'max_length', not {padding}")
    elif padding == "max_length" and cut_off_length is None:
        raise ValueError("`cut_off_length` must be specified when `padding='max_length'`")

    for current_segment_list in current_segments:
        if current_segment_list is not None and len([d["tokens"] for d in current_segment_list]) > 0:
            sequence = torch.cat([d["tokens"] for d in current_segment_list], dim=-1)

            if cut_off_length is not None:
                sequence = sequence[-cut_off_length:]

            if bos_token_tensor is not None:
                sequence = torch.cat([bos_token_tensor, sequence])

            sequences.append(sequence)
            max_total_length = max(max_total_length, len(sequences[-1]))
        elif bos_token_tensor is not None:
            sequences.append(bos_token_tensor)
        else:
            sequences.append(torch.tensor([], device=device))

    max_total_length = cut_off_length + 1 if padding == "max_length" else max_total_length
    for i in range(len(current_segments)):
        pad_length = max_total_length - len(sequences[i])
        pad = (0, pad_length) if padding_side == "right" else (pad_length, 0)
        sequences[i] = F.pad(sequences[i], pad=pad, value=pad_token_id)

    sequences = torch.stack(sequences, dim=0)
    return sequences


class WhisperGenerationMixin:
    def _extract_token_timestamps(self, generate_outputs, alignment_heads, time_precision=0.02, num_frames=None):
        """
        Calculates token-level timestamps using the encoder-decoder cross-attentions and dynamic time-warping (DTW) to
        map each output token to a position in the input audio. If `num_frames` is specified, the encoder-decoder
        cross-attentions will be cropped before applying DTW.

        Returns:
            tensor containing the timestamps in seconds for each predicted token
        """
        # Create a list with `decoder_layers` elements, each a tensor of shape
        # (batch size, attention_heads, output length, input length).
        cross_attentions = []
        for i in range(self.config.decoder_layers):
            cross_attentions.append(torch.cat([x[i] for x in generate_outputs.cross_attentions], dim=2))

        # Select specific cross-attention layers and heads. This is a tensor
        # of shape (batch size, num selected, output length, input length).
        weights = torch.stack([cross_attentions[l][:, h] for l, h in alignment_heads])
        weights = weights.permute([1, 0, 2, 3])

        weight_length = None

        if "beam_indices" in generate_outputs:
            # If beam search has been used, the output sequences may have been generated for more timesteps than their sequence_lengths
            # since the beam search strategy chooses the most probable sequences at the end of the search.
            # In that case, the cross_attentions weights are too long and we have to make sure that they have the right output_length
            weight_length = (generate_outputs.beam_indices != -1).sum(-1).max()
            weights = weights[:, :, :weight_length]

            # If beam index is still -1, it means that the associated token id is EOS
            # We need to replace the index with 0 since index_select gives an error if any of the indexes is -1.
            beam_indices = generate_outputs.beam_indices[:, :weight_length]
            beam_indices = beam_indices.masked_fill(beam_indices == -1, 0)

            # Select the cross attention from the right beam for each output sequences
            weights = torch.stack(
                [
                    torch.index_select(weights[:, :, i, :], dim=0, index=beam_indices[:, i])
                    for i in range(beam_indices.shape[1])
                ],
                dim=2,
            )

        # make sure timestamps are as long as weights
        input_length = weight_length or cross_attentions[0].shape[2]
        timestamps = torch.zeros_like(generate_outputs.sequences, dtype=torch.float32)[:, : input_length + 1]
        batch_size = timestamps.shape[0]

        if num_frames is not None:
            # two cases:
            # 1. num_frames is the same for each sample -> compute the DTW matrix for each sample in parallel
            # 2. num_frames is different, compute the DTW matrix for each sample sequentially

            # we're using np.unique because num_frames can be int/list/tuple
            if isinstance(num_frames, int):
                weights = weights[..., : num_frames // 2]

            elif isinstance(num_frames, (list, tuple, np.ndarray)) and len(np.unique(num_frames)) == 1:
                weights = weights[..., : num_frames[0] // 2]

            elif isinstance(num_frames, (torch.Tensor)) and len(torch.unique(num_frames)) == 1:
                weights = weights[..., : num_frames[0] // 2]

            else:
                # num_frames is of shape (batch_size,) whereas batch_size is truely batch_size*num_return_sequences
                repeat_time = batch_size if isinstance(num_frames, int) else batch_size // len(num_frames)
                num_frames = np.repeat(num_frames, repeat_time)

        if num_frames is None or isinstance(num_frames, int):
            # Normalize and smoothen the weights.
            std = torch.std(weights, dim=-2, keepdim=True, unbiased=False)
            mean = torch.mean(weights, dim=-2, keepdim=True)
            weights = (weights - mean) / std
            weights = _median_filter(weights, self.config.median_filter_width)

            # Average the different cross-attention heads.
            weights = weights.mean(dim=1)

        # Perform dynamic time warping on each element of the batch.
        for batch_idx in range(batch_size):
            if num_frames is not None and isinstance(num_frames, (tuple, list, np.ndarray, torch.Tensor)):
                matrix = weights[batch_idx, ..., : num_frames[batch_idx] // 2]

                # Normalize and smoothen the weights.
                std = torch.std(matrix, dim=-2, keepdim=True, unbiased=False)
                mean = torch.mean(matrix, dim=-2, keepdim=True)
                matrix = (matrix - mean) / std
                matrix = _median_filter(matrix, self.config.median_filter_width)

                # Average the different cross-attention heads.
                matrix = matrix.mean(dim=0)
            else:
                matrix = weights[batch_idx]

            text_indices, time_indices = _dynamic_time_warping(-matrix.cpu().double().numpy())
            jumps = np.pad(np.diff(text_indices), (1, 0), constant_values=1).astype(bool)
            jump_times = time_indices[jumps] * time_precision
            timestamps[batch_idx, 1:] = torch.tensor(jump_times)

        return timestamps

    def generate(
        self,
        input_features: Optional[torch.Tensor] = None,
        generation_config: Optional[GenerationConfig] = None,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
        synced_gpus: bool = False,
        return_timestamps: Optional[bool] = None,
        task: Optional[str] = None,
        language: Optional[Union[str, List[str]]] = None,
        is_multilingual: Optional[bool] = None,
        prompt_ids: Optional[torch.Tensor] = None,
        prompt_condition_type: Optional[str] = None,  # first-segment, all-segments
        condition_on_prev_tokens: Optional[bool] = None,
        temperature: Optional[Union[float, Tuple[float, ...]]] = None,
        compression_ratio_threshold: Optional[float] = None,
        logprob_threshold: Optional[float] = None,
        no_speech_threshold: Optional[float] = None,
        num_segment_frames: Optional[int] = None,
        attention_mask: Optional[torch.Tensor] = None,
        time_precision: float = 0.02,
        return_token_timestamps: Optional[bool] = None,
        return_segments: bool = False,
        return_dict_in_generate: Optional[bool] = None,
        **kwargs,
    ):
        """
        Transcribes or translates log-mel input features to a sequence of auto-regressively generated token ids.

        <Tip warning={true}>

        Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
        model's default generation configuration. You can override any `generation_config` by passing the corresponding
        parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.

        For an overview of generation strategies and code examples, check out the [following
        guide](./generation_strategies).

        </Tip>

        Parameters:
            input_features (`torch.Tensor` of shape `(batch_size, feature_size, sequence_length)`, *optional*):
                Float values of log-mel features extracted from the raw speech waveform. The raw speech waveform can be obtained by
                loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
                the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
                [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
                tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] for details.
            generation_config (`~generation.GenerationConfig`, *optional*):
                The generation configuration to be used as base parametrization for the generation call. `**kwargs`
                passed to generate matching the attributes of `generation_config` will override them. If
                `generation_config` is not provided, the default will be used, which had the following loading
                priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
                configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
                default values, whose documentation should be checked to parameterize generation.
            logits_processor (`LogitsProcessorList`, *optional*):
                Custom logits processors that complement the default logits processors built from arguments and
                generation config. If a logit processor is passed that is already created with the arguments or a
                generation config an error is thrown. This feature is intended for advanced users.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                Custom stopping criteria that complement the default stopping criteria built from arguments and a
                generation config. If a stopping criteria is passed that is already created with the arguments or a
                generation config an error is thrown. This feature is intended for advanced users.
            prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
                If provided, this function constraints the beam search to allowed tokens only at each step. If not
                provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
                `input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
                on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
                for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
                Retrieval](https://arxiv.org/abs/2010.00904).
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            return_timestamps (`bool`, *optional*):
                Whether to return the timestamps with the text. This enables the `WhisperTimestampsLogitsProcessor`.
            task (`str`, *optional*):
                Task to use for generation, either "translate" or "transcribe". The `model.config.forced_decoder_ids`
                will be updated accordingly.
            language (`str` or list of `str`, *optional*):
                Language token to use for generation, can be either in the form of `<|en|>`, `en` or `english`. For
                batched generation, a list of language tokens can be passed. You can find all the possible language
                tokens in the `model.generation_config.lang_to_id` dictionary.
            is_multilingual (`bool`, *optional*):
                Whether or not the model is multilingual.
            prompt_ids (`torch.Tensor`, *optional*):
                Rank-1 tensor of token IDs created by passing text to [`~WhisperProcessor.get_prompt_ids`] that is
                provided as a prompt to each chunk. This can be used to provide or "prompt-engineer" a context for
                transcription, e.g. custom vocabularies or proper nouns to make it more likely to predict those words
                correctly. It cannot be used in conjunction with `decoder_start_token_id` as it overwrites this value.
            prompt_condition_type (`str`, *optional*):
                Only relevant for long-form transcription. Condition type of `prompt_ids`. 'first-segment' means only the first segment is conditioned on `prompt_ids`. 'all-segments' means each segment is conditioned on `prompt_ids`. Make sure to enable `condition_on_prev_tokens` for 'all-segments'.
                Defaults to 'first-segment'. For short-term transcription only 'first-segment' is possible.
            condition_on_prev_tokens (`bool`, *optional*):
                Only relevant for long-form transcription. Whether to condition each segment on the previous segment.
                As shown in the [the Whisper paper](https://cdn.openai.com/papers/whisper.pdf), this can help to improve
                performance.
            temperature (`float` or list of `float`, *optional*):
                The temperature to be used for generation. Passing a single `float` value and `do_sample=True` activates
                generation using sampling. For long-form transcription, temperature fallback can be activated by passing
                a list of float values such as (0.0, 0.2, 0.4, 0.6, 0.8, 1.0). As shown in the [the Whisper paper](https://cdn.openai.com/papers/whisper.pdf), this can help to improve
                performance.
            compression_ratio_threshold (`float`, *optional*):
                Only relevant for long-form transcription. If defined, the zlib compression rate of each segment will be computed. If the compression rate of
                a segment is higher than `compression_ratio_threshold`, temperature fallback is activated: the generated segment is discarded and the generation is
                repeated using a higher temperature. The intuition behind this feature is that segments with very high compression rates
                suffer from a lot of repetition. The unwanted repetition can be reduced by injecting more randomness by increasing the temperature. If `compression_ratio_threshold` is defined
                make sure that `temperature` is a list of values. A common value for `compression_ratio_threshold` is 1.35.
                As shown in the [the Whisper paper](https://cdn.openai.com/papers/whisper.pdf), this can help to improve
                performance.
            logprob_threshold (`float`, *optional*):
                Only relevant for long-form transcription. If defined, the average log-probability of each segment will be computed. If the log-probability of
                a given segment is lower than `logprob_threshold`, temperature fallback is activated: the generated segment is discarded and the generation is
                repeated using a higher temperature. The intuition behind this feature is that segments of low log-probability
                can be improved by injecting more randomness by increasing the temperature. If `logprob_threshold` is defined
                make sure that `temperature` is a list of values. A common value for `logprob_threshold` is -1.0.
                As shown in the [the Whisper paper](https://cdn.openai.com/papers/whisper.pdf), this can help to improve
                performance.
            no_speech_threshold (`float`, *optional*):
                Only relevant for long-form transcription. If defined, the "no-speech" token combined with the `logprob_threshold`
                is used to determine whether a segment contains only silence. In this case, the transcription for this segment
                is skipped.
                As shown in the [the Whisper paper](https://cdn.openai.com/papers/whisper.pdf), this can help to improve
                performance.
            num_segment_frames (`int`, *optional*):
                The number of frames a single segment is made of. If not defined, `num_segment_frames` defaults to the model's stride
                times the maximum input length.
            attention_mask (`torch.Tensor`, *optional*):
                `attention_mask` needs to be passed when doing long-form transcription using a batch size > 1.
            time_precision (`int`, *optional*, defaults to 0.02):
                The duration of output token in seconds. *E.g.* 0.02 means that a generated token on average accounts
                for 20 ms.
            return_token_timestamps (`bool`, *optional*):
                Whether to return token-level timestamps with the text. This can be used with or without the
                `return_timestamps` option. To get word-level timestamps, use the tokenizer to group the tokens into
                words.
            return_segments (`bool`, *optional*, defaults to `False`):
                Whether to additionally return a list of all segments. Note that this option can only be enabled
                when doing long-form transcription.
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of just returning the generated tokens.
                Note that when doing long-form transcription, `return_dict_in_generate` can only be enabled when
                `return_segments` is set True. In this case the generation outputs of each segment is added to each
                segment.
            kwargs (`Dict[str, Any]`, *optional*):
                Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
                forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
                specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.

        Return:
            [`~utils.ModelOutput`] or `torch.LongTensor` or `Dict[str, Any]`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
            or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor` or a dict of segments when `return_segments=True`.

                If the passed input is > 30 seconds / > 3000 mel input features and `return_segments=True` then a dictionary of generated sequence ids, called `sequences` and a list of each generated segment is returned.

                else if the passed input is <= 30 seconds / >= 3000 mel input features, the possible [`~utils.ModelOutput`] types are:

                    - [`~generation.GenerateEncoderDecoderOutput`],
                    - [`~generation.GenerateBeamEncoderDecoderOutput`]

                else only the generated output sequence ids are returned.

        Example:

        - *Longform transcription*: To transcribe or translate audios longer than 30 seconds, process the audio files without truncation and pass all mel features at once to generate.

        ```python
        >>> import torch
        >>> from transformers import AutoProcessor, WhisperForConditionalGeneration
        >>> from datasets import load_dataset, Audio

        >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
        >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
        >>> model.cuda()  # doctest: +IGNORE_RESULT

        >>> # load audios > 30 seconds
        >>> ds = load_dataset("distil-whisper/meanwhile", "default")["test"]
        >>> # resample to 16kHz
        >>> ds = ds.cast_column("audio", Audio(sampling_rate=16000))
        >>> # take first 8 audios and retrieve array
        >>> audio = ds[:8]["audio"]
        >>> audio = [x["array"] for x in audio]

        >>> # make sure to NOT truncate the input audio, to return the `attention_mask` and to pad to the longest audio
        >>> inputs = processor(audio, return_tensors="pt", truncation=False, padding="longest", return_attention_mask=True, sampling_rate=16_000)
        >>> inputs = inputs.to("cuda", torch.float32)

        >>> # transcribe audio to ids
        >>> generated_ids = model.generate(**inputs)

        >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)
        >>> transcription[0]
        " Folks, if you watch the show, you know, I spent a lot of time right over there. Patiently and astutely scrutinizing the boxwood and mahogany chest set of the day's biggest stories developing the central headline pawns, definitely maneuvering an oso topical night to F6, fainting a classic Sicilian, nade door variation on the news, all the while seeing eight moves deep and patiently marshalling the latest press releases into a fisher's shows in Lip Nitsky attack that culminates in the elegant lethal slow-played, all-passant checkmate that is my nightly monologue. But sometimes, sometimes, folks, I. CHEERING AND APPLAUSE Sometimes I startle away, cubside down in the monkey bars of a condemned playground on a super fun site. Get all hept up on goofballs. Rummage that were discarded tag bag of defective toys. Yank out a fist bowl of disembodied doll limbs, toss them on a stained kid's place mat from a defunct dennies. set up a table inside a rusty cargo container down by the Wharf and challenged toothless drifters to the godless bughouse blitz of tournament that is my segment. Meanwhile."
        ```

        - *Shortform transcription*: If passed mel input features are < 30 seconds, the whole audio will be transcribed with a single call to generate.

        ```python
        >>> import torch
        >>> from transformers import AutoProcessor, WhisperForConditionalGeneration
        >>> from datasets import load_dataset

        >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
        >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")

        >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")

        >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")
        >>> input_features = inputs.input_features

        >>> generated_ids = model.generate(inputs=input_features)

        >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
        >>> transcription
        ' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'
        ```

        """
        # 0. deprecate old inputs
        if "inputs" in kwargs:
            input_features = kwargs.pop("inputs")
            warnings.warn(
                "The input name `inputs` is deprecated. Please make sure to use `input_features` instead.",
                FutureWarning,
            )

        # 1. prepare generation config
        generation_config, kwargs = self._prepare_generation_config(generation_config, **kwargs)

        # 2. set global generate variables
        input_stride = self.model.encoder.conv1.stride[0] * self.model.encoder.conv2.stride[0]
        num_segment_frames = input_stride * self.config.max_source_positions
        batch_size, total_input_frames = self._retrieve_total_input_frames(
            input_features=input_features, input_stride=input_stride, kwargs=kwargs
        )
        is_shortform = total_input_frames <= num_segment_frames

        # 3. Make sure generation config is correctly set
        # Make sure the generation config is correctly set depending on whether timestamps are to be returned or not
        return_dict_in_generate = self._set_return_outputs(
            return_dict_in_generate=return_dict_in_generate,
            return_token_timestamps=return_token_timestamps,
            logprob_threshold=logprob_threshold,
            generation_config=generation_config,
        )
        timestamp_begin = self._set_return_timestamps(
            return_timestamps=return_timestamps, is_shortform=is_shortform, generation_config=generation_config
        )
        self._set_language_and_task(
            language=language, task=task, is_multilingual=is_multilingual, generation_config=generation_config
        )
        self._set_num_frames(
            return_token_timestamps=return_token_timestamps, generation_config=generation_config, kwargs=kwargs
        )
        self._set_thresholds_and_condition(
            generation_config=generation_config,
            logprob_threshold=logprob_threshold,
            compression_ratio_threshold=compression_ratio_threshold,
            no_speech_threshold=no_speech_threshold,
            condition_on_prev_tokens=condition_on_prev_tokens,
        )
        self._set_prompt_condition_type(
            generation_config=generation_config,
            prompt_condition_type=prompt_condition_type,
        )

        kwargs["attention_mask"] = attention_mask
        # pass self.config for backward compatibility
        init_tokens = self._retrieve_init_tokens(
            input_features,
            batch_size=batch_size,
            generation_config=generation_config,
            config=self.config,
            num_segment_frames=num_segment_frames,
            kwargs=kwargs,
        )
        # passing `decoder_input_ids` is deprecated - the only exception is for assisted generation
        # where the input ids are handled explicitly by the generate method
        self._check_decoder_input_ids(kwargs=kwargs)

        # 3. Retrieve logits processors
        device = kwargs["encoder_outputs"][0].device if "encoder_outputs" in kwargs else input_features.device
        begin_index = init_tokens.shape[1]
        logits_processor = self._retrieve_logit_processors(
            generation_config=generation_config,
            logits_processor=logits_processor,
            begin_index=begin_index,  # begin index is index of first generated decoder token
            num_beams=kwargs.get("num_beams", 1),
            device=device,
        )

        # 4 Set and retrieve global generation variables
        self._set_condition_on_prev_tokens(
            condition_on_prev_tokens=condition_on_prev_tokens, generation_config=generation_config
        )

        temperatures = [temperature] if not isinstance(temperature, (list, tuple)) else temperature
        temperature = temperatures[0]

        max_frames, seek = self._retrieve_max_frames_and_seek(
            batch_size=batch_size,
            attention_mask=attention_mask,
            total_input_frames=total_input_frames,
            is_shortform=is_shortform,
        )

        # 5 Prepare running variables, list for generation
        num_return_sequences = generation_config.num_return_sequences
        (
            batch_idx_map,
            cur_bsz,
            input_features,
            seek,
            max_frames,
            init_tokens,
            do_condition_on_prev_tokens,
        ) = self._expand_variables_for_generation(
            input_features=input_features,
            seek=seek,
            max_frames=max_frames,
            init_tokens=init_tokens,
            batch_size=batch_size,
            condition_on_prev_tokens=condition_on_prev_tokens,
            generation_config=generation_config,
        )

        current_segments = self._prepare_segments(
            prompt_ids=prompt_ids,
            batch_size=cur_bsz,
            generation_config=generation_config,
        )

        # 6 Transcribe audio until we reach the end of all input audios
        while (seek < max_frames).any():
            # 6.1 NOTE: When in longform transcription mode and batch size > 1 we need to dynamically reduce the batch size during the loop
            # in case one audio finished earlier than another one. Thus, we need to keep a table of "previous-index-2-current-index" in order
            # to know which original audio is being decoded
            # Set updated index map, duration of previously decoded chunks and number of max frames of current decoding chunk
            input_features, cur_bsz, batch_idx_map = self._maybe_reduce_batch(
                input_features=input_features,
                seek=seek,
                max_frames=max_frames,
                cur_bsz=cur_bsz,
                batch_idx_map=batch_idx_map,
            )
            time_offset = seek * time_precision / input_stride
            seek_num_frames = (max_frames - seek).clamp(max=num_segment_frames)

            # 6.2 cut out next 30s segment from input features
            segment_input = self._get_input_segment(
                input_features=input_features,
                seek=seek,
                seek_num_frames=seek_num_frames,
                num_segment_frames=num_segment_frames,
                cur_bsz=cur_bsz,
                batch_idx_map=batch_idx_map,
            )

            # 6.3 prepare decoder input ids
            suppress_tokens = _get_attr_from_logit_processors(
                logits_processor, SuppressTokensLogitsProcessor, "suppress_tokens"
            )

            decoder_input_ids, kwargs = self._prepare_decoder_input_ids(
                cur_bsz=cur_bsz,
                init_tokens=init_tokens,
                current_segments=current_segments,
                batch_idx_map=batch_idx_map,
                do_condition_on_prev_tokens=do_condition_on_prev_tokens,
                prompt_ids=prompt_ids,
                generation_config=generation_config,
                config=self.config,
                device=init_tokens.device,
                suppress_tokens=suppress_tokens,
                kwargs=kwargs,
            )

            # 6.4 set max new tokens or max length
            self._set_max_new_tokens_and_length(
                config=self.config,
                decoder_input_ids=decoder_input_ids,
                generation_config=generation_config,
            )

            # 6.5 Set current `begin_index` for all logit processors
            if logits_processor is not None:
                for proc in logits_processor:
                    if hasattr(proc, "set_begin_index"):
                        proc.set_begin_index(decoder_input_ids.shape[-1])

            # 6.6 Run generate with fallback
            (
                seek_sequences,
                seek_outputs,
                should_skip,
                do_condition_on_prev_tokens,
                model_output_type,
            ) = self.generate_with_fallback(
                segment_input=segment_input,
                decoder_input_ids=decoder_input_ids,
                cur_bsz=cur_bsz,
                batch_idx_map=batch_idx_map,
                seek=seek,
                num_segment_frames=num_segment_frames,
                max_frames=max_frames,
                temperatures=temperatures,
                generation_config=generation_config,
                logits_processor=logits_processor,
                stopping_criteria=stopping_criteria,
                prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
                synced_gpus=synced_gpus,
                return_token_timestamps=return_token_timestamps,
                do_condition_on_prev_tokens=do_condition_on_prev_tokens,
                is_shortform=is_shortform,
                batch_size=batch_size,
                kwargs=kwargs,
            )

            # 6.7 In every generated sequence, split by timestamp tokens and extract segments
            for i, seek_sequence in enumerate(seek_sequences):
                prev_i = batch_idx_map[i]

                if should_skip[i]:
                    seek[prev_i] += seek_num_frames[prev_i]
                    continue

                segments, segment_offset = self._retrieve_segment(
                    seek_sequence=seek_sequence,
                    seek_outputs=seek_outputs,
                    time_offset=time_offset,
                    timestamp_begin=timestamp_begin,
                    seek_num_frames=seek_num_frames,
                    time_precision=time_precision,
                    input_stride=input_stride,
                    prev_idx=prev_i,
                    idx=i,
                    return_token_timestamps=return_token_timestamps,
                )

                current_segments[prev_i] += segments

                if is_shortform:
                    seek[prev_i] += max_frames[i]
                else:
                    seek[prev_i] += segment_offset

        # 7. Once all segments are added to the list of all segments, called `current_segments`, we extract the predicted
        # output tokens from the list of dicts. If we use batch size > 1, we make sure to pad the output
        final_segments = (
            [x[1:] for x in current_segments]
            if (prompt_ids is not None and generation_config.prompt_condition_type == "first-segment")
            else current_segments
        )

        sequences = _pad_to_max_length(
            final_segments, generation_config.pad_token_id, device=self.device, padding_side="right"
        )

        # 8. If we return all segments, the predicted output sequences are put under `"sequences"`.
        if return_segments:
            return {"sequences": sequences, "segments": final_segments}

        if is_shortform:
            # add eos token:
            if generation_config.max_new_tokens is None and generation_config.max_length is None:
                eos_tokens = torch.full((sequences.shape[0], 1), generation_config.eos_token_id)
                sequences = torch.cat([sequences, eos_tokens], dim=-1)

            if return_token_timestamps:
                outputs = {}
                outputs["sequences"] = sequences
                outputs["token_timestamps"] = torch.stack([d["token_timestamps"] for d in seek_outputs], dim=0)
            else:
                outputs = sequences

            if return_dict_in_generate and generation_config.return_dict_in_generate:
                dict_outputs = self._stack_split_outputs(seek_outputs, model_output_type, sequences.device, kwargs)

                if num_return_sequences > 1:
                    if hasattr(dict_outputs, "encoder_attentions") and dict_outputs.encoder_attentions is not None:
                        dict_outputs.encoder_attentions = tuple(
                            dict_outputs.encoder_attentions[i][::num_return_sequences]
                            for i in range(len(dict_outputs.encoder_attentions))
                        )
                    if (
                        hasattr(dict_outputs, "encoder_hidden_states")
                        and dict_outputs.encoder_hidden_states is not None
                    ):
                        dict_outputs.encoder_hidden_states = tuple(
                            dict_outputs.encoder_hidden_states[i][::num_return_sequences]
                            for i in range(len(dict_outputs.encoder_hidden_states))
                        )
                if return_token_timestamps:
                    dict_outputs["token_timestamps"] = outputs["token_timestamps"]
                return dict_outputs

            return outputs

        return sequences

    def generate_with_fallback(
        self,
        segment_input,
        decoder_input_ids,
        cur_bsz,
        batch_idx_map,
        seek,
        num_segment_frames,
        max_frames,
        temperatures,
        generation_config,
        logits_processor,
        stopping_criteria,
        prefix_allowed_tokens_fn,
        synced_gpus,
        return_token_timestamps,
        do_condition_on_prev_tokens,
        is_shortform,
        batch_size,
        kwargs,
    ):
        kwargs = copy.copy(kwargs)

        # 6.6 Batch generate current chunk
        seek_sequence_list = [None for _ in range(cur_bsz)]
        seek_outputs_list = [None for _ in range(cur_bsz)]
        needs_fallback = [False for _ in range(cur_bsz)]
        should_skip = [False for _ in range(cur_bsz)]
        fallback_index_map = list(range(cur_bsz))
        if generation_config.no_speech_threshold is not None:
            self._setup_no_speech_detection(logits_processor, segment_input, decoder_input_ids, kwargs)

        for fallback_idx, temperature in enumerate(temperatures):
            generation_config.do_sample = temperature is not None and temperature > 0.0
            generation_config.temperature = temperature if generation_config.do_sample else 1.0
            if generation_config.do_sample:
                generation_config.num_beams = 1

            generate_kwargs = copy.copy(kwargs)
            for key in ["do_sample", "temperature", "num_beams"]:
                if key in generate_kwargs:
                    del generate_kwargs[key]

            cur_bsz = decoder_input_ids.shape[0]
            if generation_config.cache_implementation == "static" and cur_bsz < batch_size:
                segment_input = F.pad(segment_input, (0, 0, 0, 0, 0, batch_size - cur_bsz), value=0)
                decoder_input_ids = F.pad(
                    decoder_input_ids, (0, 0, 0, batch_size - cur_bsz), value=generation_config.pad_token_id
                )
                if generate_kwargs.get("decoder_attention_mask") is not None:
                    generate_kwargs["decoder_attention_mask"] = F.pad(
                        generate_kwargs["decoder_attention_mask"], (0, 0, 0, batch_size - cur_bsz), value=True
                    )
                if generate_kwargs.get("encoder_outputs") is not None:
                    generate_kwargs["encoder_outputs"] = F.pad(
                        generate_kwargs["encoder_outputs"], (0, 0, 0, 0, 0, batch_size - cur_bsz), value=0
                    )

            seek_outputs = super().generate(
                segment_input,
                generation_config=generation_config,
                logits_processor=logits_processor,
                stopping_criteria=stopping_criteria,
                prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
                synced_gpus=synced_gpus,
                decoder_input_ids=decoder_input_ids,
                **generate_kwargs,
            )

            model_output_type = type(seek_outputs)

            # post-process sequence tokens and outputs to be in list form
            seek_sequences, seek_outputs = self._postprocess_outputs(
                seek_outputs=seek_outputs,
                decoder_input_ids=decoder_input_ids,
                return_token_timestamps=return_token_timestamps,
                generation_config=generation_config,
                is_shortform=is_shortform,
            )

            if cur_bsz < batch_size:
                seek_sequences = seek_sequences[:cur_bsz]
                seek_outputs = seek_outputs[:cur_bsz]

            # 6.7 Extract cut sequences from every sequence and check if fallback should be applied
            # Loop over each decoded audio individually as each decoding can be of a different length
            new_fallback_index_map = []
            new_segment_input = []
            new_decoder_input_ids = []
            new_decoder_attention_mask = []

            for i, seek_sequence in enumerate(seek_sequences):
                # make sure we cut a predicted EOS token if we are not finished with the generation yet
                prev_i = batch_idx_map[fallback_index_map[i]]
                is_not_final = (seek[prev_i] + num_segment_frames) < max_frames[prev_i]

                # remove eos token id
                if is_not_final and seek_sequence[-1] == generation_config.eos_token_id:
                    seek_sequence = seek_sequence[:-1]
                    if return_token_timestamps and not is_shortform:
                        seek_outputs[i]["token_timestamps"] = seek_outputs[i]["token_timestamps"][:-1]

                # remove all padding tokens
                if seek_sequence[-1] == generation_config.pad_token_id:
                    num_paddings = (seek_sequence == generation_config.pad_token_id).sum()
                    seek_sequence = seek_sequence[:-num_paddings]
                    if return_token_timestamps and not is_shortform:
                        seek_outputs[i]["token_timestamps"] = seek_outputs[i]["token_timestamps"][:-num_paddings]

                # check which sequences in batch need fallback & which should be skipped
                needs_fallback[i], should_skip[i] = self._need_fallback(
                    seek_sequence,
                    seek_outputs,
                    i,
                    logits_processor,
                    generation_config,
                    self.config.vocab_size,
                    temperature,
                )

                seek_sequence_list[fallback_index_map[i]] = seek_sequence
                seek_outputs_list[fallback_index_map[i]] = seek_outputs[i]
                is_low_temperature = temperature is None or temperature < 0.5
                do_condition_on_prev_tokens[fallback_index_map[i]] = (
                    generation_config.condition_on_prev_tokens and is_low_temperature
                )

                if needs_fallback[i]:
                    new_fallback_index_map.append(fallback_index_map[i])
                    new_segment_input.append(segment_input[i])
                    new_decoder_input_ids.append(decoder_input_ids[i])
                    if "decoder_attention_mask" in kwargs:
                        new_decoder_attention_mask.append(kwargs["decoder_attention_mask"][i])

            fallback_index_map = new_fallback_index_map

            # if no sequence needs to be run with temperature fallback, we're finished
            if len(fallback_index_map) == 0 or fallback_idx == len(temperatures) - 1:
                seek_sequences = seek_sequence_list
                seek_outputs = seek_outputs_list
                break

            # if we're still in the loop, make sure that decoder_input_ids and segment inputs are tensors
            decoder_input_ids = torch.stack(new_decoder_input_ids)
            segment_input = torch.stack(new_segment_input)
            if "decoder_attention_mask" in kwargs:
                kwargs["decoder_attention_mask"] = torch.stack(new_decoder_attention_mask)

        return seek_sequences, seek_outputs, should_skip, do_condition_on_prev_tokens, model_output_type

    @staticmethod
    def _prepare_segments(prompt_ids, batch_size, generation_config):
        if prompt_ids is not None and generation_config.prompt_condition_type == "first-segment":
            prev_sot_token_id = getattr(generation_config, "prev_sot_token_id", None)
            prompt_ids = prompt_ids[1:] if prompt_ids[0] == prev_sot_token_id else prompt_ids
            current_segments = [[{"tokens": prompt_ids}] for _ in range(batch_size)]
        else:
            current_segments = [[] for _ in range(batch_size)]

        return current_segments

    def _postprocess_outputs(
        self, seek_outputs, decoder_input_ids, return_token_timestamps, generation_config, is_shortform
    ):
        # remove all previously passed decoder input ids
        start_idx = decoder_input_ids.shape[-1] if not is_shortform else torch.tensor(0)

        if isinstance(seek_outputs, torch.Tensor):
            seek_outputs = seek_outputs[:, start_idx:]
            return seek_outputs, seek_outputs

        if return_token_timestamps and hasattr(generation_config, "alignment_heads"):
            num_frames = getattr(generation_config, "num_frames", None)
            seek_outputs["token_timestamps"] = self._extract_token_timestamps(
                seek_outputs, generation_config.alignment_heads, num_frames=num_frames
            )
            seek_outputs["token_timestamps"] = seek_outputs["token_timestamps"][:, start_idx:]

        seek_outputs["sequences"] = seek_outputs["sequences"][:, start_idx:]

        def split_by_batch_index(values, key, batch_idx, is_shortform):
            if key in ["scores", "encoder_attentions", "encoder_hidden_states", "logits"]:
                return [v[batch_idx].cpu() for v in values]
            if key in ["decoder_attentions", "decoder_hidden_states", "cross_attentions"]:
                return tuple(tuple(w[batch_idx][None].cpu() for w in v) for v in values)
            elif key == "past_key_values":
                if not is_shortform:
                    # we don't save `past_key_values` as this is too costly for longform
                    return None
                elif isinstance(values, EncoderDecoderCache):
                    all_past_key_values = []
                    for layer_idx in range(self.config.decoder_layers):
                        layer_past_key_values = []
                        for cache_cls in [values.self_attention_cache, values.cross_attention_cache]:
                            for v in [cache_cls.key_cache, cache_cls.value_cache]:
                                layer_past_key_values.append(v[layer_idx][batch_idx][None].cpu())
                        all_past_key_values.append(tuple(layer_past_key_values))
                    return tuple(all_past_key_values)
                else:
                    all_past_key_values = []
                    for v in range(len(values)):
                        layer_past_key_values = []
                        for w in values[v]:
                            layer_past_key_values.append(w[batch_idx][None].cpu())
                        all_past_key_values.append(tuple(layer_past_key_values))
                    return tuple(all_past_key_values)

            return values[batch_idx].cpu()

        sequence_tokens = seek_outputs["sequences"]
        seek_outputs = [
            {k: split_by_batch_index(v, k, i, is_shortform) for k, v in seek_outputs.items()}
            for i in range(sequence_tokens.shape[0])
        ]

        return sequence_tokens, seek_outputs

    def _stack_split_outputs(self, seek_outputs, model_output_type, device, kwargs):
        # Stack back seek_outputs tensors after splitting them with the split_by_batch_index method
        outputs = {}
        for key in seek_outputs[0].keys():
            if key == "sequences":
                outputs[key] = torch.stack([v[key] for v in seek_outputs], dim=0).to(device)
            if key in ["scores", "encoder_attentions", "encoder_hidden_states", "logits"]:
                outputs[key] = tuple(
                    torch.stack([v[key][i] for v in seek_outputs]).to(device) for i in range(len(seek_outputs[0][key]))
                )
            if key in ["decoder_attentions", "decoder_hidden_states", "cross_attentions"]:
                outputs[key] = tuple(
                    tuple(
                        torch.stack([v[key][i][j] for v in seek_outputs]).squeeze(1).to(device)
                        for j in range(len(seek_outputs[0][key][0]))
                    )
                    for i in range(len(seek_outputs[0][key]))
                )
            if key == "past_key_values":
                past_key_value_type = kwargs.get("past_key_values")
                if seek_outputs[0][key] is not None:
                    outputs[key] = tuple(
                        tuple(
                            torch.stack([v[key][i][j] for v in seek_outputs]).squeeze(1).to(device)
                            for j in range(len(seek_outputs[0][key][0]))
                        )
                        for i in range(len(seek_outputs[0][key]))
                    )
                    if past_key_value_type is not None and isinstance(past_key_value_type, EncoderDecoderCache):
                        outputs[key] = past_key_value_type.from_legacy_cache(outputs[key])
                else:
                    outputs[key] = None

        return model_output_type(**outputs)

    def _need_fallback(
        self,
        seek_sequence,
        seek_outputs,
        index,
        logits_processor,
        generation_config,
        vocab_size,
        temperature,
    ):
        needs_fallback = False
        should_skip = False
        if generation_config.compression_ratio_threshold is not None:
            compression_ratio = self._retrieve_compression_ratio(seek_sequence, vocab_size)

            if compression_ratio > generation_config.compression_ratio_threshold:
                needs_fallback = True

        if generation_config.logprob_threshold is not None:
            if hasattr(seek_outputs[0], "sequences_scores"):
                logprobs = [s["sequences_scores"] for s in seek_outputs][index]
            else:
                scores = seek_outputs[index]["scores"]
                logprobs = self._retrieve_avg_logprobs(
                    scores, seek_sequence, generation_config.eos_token_id, temperature
                )

            if logprobs < generation_config.logprob_threshold:
                needs_fallback = True

        if generation_config.no_speech_threshold is not None:
            no_speech_prob = _get_attr_from_logit_processors(
                logits_processor, WhisperNoSpeechDetection, "no_speech_prob"
            )

            if (
                logprobs < generation_config.logprob_threshold
                and no_speech_prob[index] > generation_config.no_speech_threshold
            ):
                needs_fallback = False
                should_skip = True

        return needs_fallback, should_skip

    def _expand_variables_for_generation(
        self, input_features, seek, max_frames, init_tokens, batch_size, condition_on_prev_tokens, generation_config
    ):
        if generation_config.num_return_sequences is not None and generation_config.num_return_sequences > 1:
            batch_idx_map = list(range(batch_size * generation_config.num_return_sequences))
            cur_bsz = len(batch_idx_map)
            do_condition_on_prev_tokens = [condition_on_prev_tokens for _ in range(len(batch_idx_map))]
            input_features = input_features.repeat_interleave(generation_config.num_return_sequences, dim=0)
            seek = seek.repeat_interleave(generation_config.num_return_sequences, dim=0)
            max_frames = max_frames.repeat_interleave(generation_config.num_return_sequences, dim=0)
            init_tokens = init_tokens.repeat_interleave(generation_config.num_return_sequences, dim=0)
            generation_config.num_return_sequences = 1
        else:
            cur_bsz = batch_size
            batch_idx_map = list(range(cur_bsz))
            do_condition_on_prev_tokens = [condition_on_prev_tokens for _ in range(cur_bsz)]

        return (
            batch_idx_map,
            cur_bsz,
            input_features,
            seek,
            max_frames,
            init_tokens,
            do_condition_on_prev_tokens,
        )

    @staticmethod
    def _setup_no_speech_detection(logits_processor, segment_input, decoder_input_ids, kwargs):
        set_inputs = _get_attr_from_logit_processors(logits_processor, WhisperNoSpeechDetection, "set_inputs")
        extra_kwargs = {k: v for k, v in kwargs.items() if torch.is_tensor(v)}
        set_inputs({"inputs": segment_input, "decoder_input_ids": decoder_input_ids, **extra_kwargs})

    @staticmethod
    def _retrieve_total_input_frames(input_features, input_stride, kwargs):
        if input_features is not None:
            return input_features.shape[0], input_features.shape[-1]

        if "encoder_outputs" in kwargs:
            encoder_outputs_shape = (
                kwargs["encoder_outputs"][0].shape
                if isinstance(kwargs["encoder_outputs"], BaseModelOutput)
                else kwargs["encoder_outputs"].shape
            )
            return encoder_outputs_shape[0], encoder_outputs_shape[1] * input_stride

        raise ValueError("Make sure to provide either `input_features` or `encoder_outputs` to `generate`.")

    @staticmethod
    def _maybe_warn_unused_inputs(
        condition_on_prev_tokens,
        temperature,
        compression_ratio_threshold,
        logprob_threshold,
        no_speech_threshold,
        total_input_frames,
    ):
        warning_prefix = (
            f"Audio input consists of only {total_input_frames}. "
            "Short-form transcription is activated."
            "{}, but will be ignored."
        )
        if condition_on_prev_tokens is not None:
            logger.warning(warning_prefix.format(f"condition_on_prev_tokens is set to {condition_on_prev_tokens}"))

        if compression_ratio_threshold is not None:
            logger.warning(
                warning_prefix.format(f"compression_ratio_threshold is set to {compression_ratio_threshold}")
            )

        if logprob_threshold is not None:
            logger.warning(warning_prefix.format(f"logprob_threshold is set to {logprob_threshold}"))

        if no_speech_threshold is not None:
            logger.warning(warning_prefix.format(f"no_speech_threshold is set to {no_speech_threshold}"))

        # when passing temperature as a list it cannot just be ignored => throw error in this case
        if isinstance(temperature, (list, tuple)):
            raise ValueError(
                f"Audio input consists of only {total_input_frames}. Short-form transcription is activated."
                f"temperature cannot be set to {temperature} which can only be used for temperature fallback for long-form generation. Make sure to set `temperature` to a float value or `None` for short-form generation."
            )

    @staticmethod
    def _set_return_outputs(return_dict_in_generate, return_token_timestamps, logprob_threshold, generation_config):
        if return_dict_in_generate is None:
            return_dict_in_generate = generation_config.return_dict_in_generate
        else:
            generation_config.return_dict_in_generate = return_dict_in_generate

        generation_config.return_token_timestamps = return_token_timestamps
        if return_token_timestamps:
            generation_config.return_dict_in_generate = True
            generation_config.output_attentions = True
            generation_config.output_scores = True

        if logprob_threshold is not None:
            generation_config.return_dict_in_generate = True
            generation_config.output_scores = True

        return return_dict_in_generate

    def _set_return_timestamps(self, return_timestamps, is_shortform, generation_config):
        if return_timestamps is None and hasattr(generation_config, "return_timestamps"):
            return_timestamps = generation_config.return_timestamps

        if not is_shortform:
            if return_timestamps is False:
                raise ValueError(
                    "You have passed more than 3000 mel input features (> 30 seconds) which automatically enables long-form generation which "
                    "requires the model to predict timestamp tokens. Please either pass `return_timestamps=True` or make sure to pass no more than 3000 mel input features."
                )

            logger.info("Setting `return_timestamps=True` for long-form generation.")
            return_timestamps = True

        if return_timestamps and not hasattr(generation_config, "no_timestamps_token_id"):
            raise ValueError(
                "You are trying to return timestamps, but the generation config is not properly set. "
                "Make sure to initialize the generation config with the correct attributes that are needed such as `no_timestamps_token_id`. "
                "For more details on how to generate the approtiate config, refer to https://github.com/huggingface/transformers/issues/21878#issuecomment-1451902363"
            )

        generation_config.return_timestamps = return_timestamps

        if hasattr(generation_config, "no_timestamps_token_id"):
            timestamp_begin = generation_config.no_timestamps_token_id + 1
        else:
            # BC for models missing the `no_timestamps_token_id` in the generation config when generating short-form with no timestamps
            # We set the timestamp begin token larger than the vocab size, such that the timestamp condition is never met in the decoding loop
            timestamp_begin = self.config.vocab_size + 1

        return timestamp_begin

    @staticmethod
    def _set_language_and_task(language, task, is_multilingual, generation_config):
        if is_multilingual is not None:
            if not hasattr(generation_config, "is_multilingual"):
                raise ValueError(
                    "The generation config is outdated and is thus not compatible with the `is_multilingual` argument "
                    "to `generate`. Please update the generation config as per the instructions "
                    "https://github.com/huggingface/transformers/issues/25084#issuecomment-1664398224"
                )
            generation_config.is_multilingual = is_multilingual

        if hasattr(generation_config, "is_multilingual") and not generation_config.is_multilingual:
            if task is not None or language is not None:
                raise ValueError(
                    "Cannot specify `task` or `language` for an English-only model. If the model is intended to be "
                    "multilingual, pass `is_multilingual=True` to generate, or update the generation config."
                )

        if language is not None:
            if not hasattr(generation_config, "lang_to_id"):
                raise ValueError(
                    "The generation config is outdated and is thus not compatible with the `language` argument "
                    "to `generate`. Either set the language using the `forced_decoder_ids` in the model config, "
                    "or update the generation config as per the instructions https://github.com/huggingface/transformers/issues/25084#issuecomment-1664398224"
                )
            generation_config.language = language

        if task is not None:
            if not hasattr(generation_config, "task_to_id"):
                raise ValueError(
                    "The generation config is outdated and is thus not compatible with the `task` argument "
                    "to `generate`. Either set the task using the `forced_decoder_ids` in the model config, "
                    "or update the generation config as per the instructions https://github.com/huggingface/transformers/issues/25084#issuecomment-1664398224"
                )
            generation_config.task = task

    def _retrieve_init_tokens(self, input_features, batch_size, generation_config, config, num_segment_frames, kwargs):
        def replace_or_add(lst: List[int], num: int, itr: Iterator[int]):
            """short function to replace num with a itr in lst"""
            found = any(i in lst for i in itr)
            if found:
                lst = [num if i in itr else i for i in lst]
            else:
                lst.append(num)
            return lst

        def language_to_id(language: str) -> int:
            language = language.lower()
            if language in generation_config.lang_to_id.keys():
                language_token = language
            elif language in TO_LANGUAGE_CODE.keys():
                language_token = f"<|{TO_LANGUAGE_CODE[language]}|>"
            elif language in TO_LANGUAGE_CODE.values():
                language_token = f"<|{language}|>"
            else:
                is_language_code = len(language) == 2
                raise ValueError(
                    f"Unsupported language: {language}. Language should be one of:"
                    f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}."
                )
            if language_token not in generation_config.lang_to_id:
                raise ValueError(
                    f"{language_token} is not supported by this specific model as it is not in the `generation_config.lang_to_id`."
                    "(You should just add it to the generation config)"
                )

            return generation_config.lang_to_id[language_token]

        task = getattr(generation_config, "task", None)
        language = getattr(generation_config, "language", None)

        forced_decoder_ids = generation_config.forced_decoder_ids
        if forced_decoder_ids is not None:
            if language is None and task is None and forced_decoder_ids[0][1] is None:
                logger.warning_once(
                    "Due to a bug fix in https://github.com/huggingface/transformers/pull/28687 transcription using a multilingual Whisper will default to language detection followed by transcription instead of translation to English."
                    "This might be a breaking change for your use case. If you want to instead always translate your audio to English, make sure to pass `language='en'`."
                )
        elif hasattr(config, "forced_decoder_ids") and config.forced_decoder_ids is not None:
            forced_decoder_ids = config.forced_decoder_ids

        if forced_decoder_ids is not None and task is not None:
            logger.warning_once(
                f"You have passed task={task}, but also have set `forced_decoder_ids` to {forced_decoder_ids} which creates a conflict. `forced_decoder_ids` will be ignored in favor of task={task}."
            )
            forced_decoder_ids = None
        elif forced_decoder_ids is not None and language is not None:
            logger.warning_once(
                f"You have passed language={language}, but also have set `forced_decoder_ids` to {forced_decoder_ids} which creates a conflict. `forced_decoder_ids` will be ignored in favor of language={language}."
            )
            forced_decoder_ids = None

        init_tokens = [generation_config.decoder_start_token_id]
        if forced_decoder_ids is not None and forced_decoder_ids[0][0] == 1:
            i = 1
            while len(forced_decoder_ids) > 0 and forced_decoder_ids[0][0] == i:
                init_tokens += [forced_decoder_ids[0][1]]
                forced_decoder_ids = forced_decoder_ids[1:]
                i += 1

            if len(forced_decoder_ids) > 0:
                raise ValueError(
                    f"You are using token ids in `forced_decoder_ids` that do not seem to correctly follow the prompt pattern of Whisper. Make sure that {forced_decoder_ids} has an entry for all indices >= 1 and < {forced_decoder_ids[0][0]}.",
                )

        # from v4.39 the forced decoder ids are always None in favour of decoder input ids
        generation_config.forced_decoder_ids = None

        is_lang_id_undefined = len(init_tokens) <= 1 or (len(init_tokens) > 1 and init_tokens[1] is None)

        # Make sure language is a list of strings of the correct length
        if isinstance(language, (list, tuple)):
            if any(l is None for l in language):
                raise TypeError(
                    "Expected `language` to be `None`, a single string (e.g. `'en'`), or a list of strings with length equal to the batch size (e.g. `('en', 'fr')` for a batch size of 2). Got a list containing `None`."
                )
            if len(language) != batch_size:
                raise ValueError(
                    "When passing a list of languages, the length of the list must match the batch size. "
                    f"Expected length of {batch_size}, but got {len(language)} languages."
                )
            languages = language
        elif language is None:
            # Language will be detected for each item in batch
            languages = [None] * batch_size
        else:
            languages = [language]  # Use a length-1 list now, broadcast later

        # Separate init_tokens for each language
        init_tokens = [copy.copy(init_tokens) for _ in languages]

        # Update init_tokens with languages
        lang_ids = None
        if language is not None:
            lang_ids = [language_to_id(l) for l in languages]
        elif hasattr(generation_config, "lang_to_id") and is_lang_id_undefined:
            # language is not defined or intentially set to `None` to trigger language detection
            lang_ids = self.detect_language(
                input_features=input_features,
                encoder_outputs=kwargs.get("encoder_outputs", None),
                attention_mask=kwargs.get("attention_mask", None),
                generation_config=generation_config,
                num_segment_frames=num_segment_frames,
            ).tolist()
        if lang_ids is not None:
            # append or replace lang_ids to init_tokens
            for i in range(len(init_tokens)):
                if len(init_tokens[i]) > 1:
                    init_tokens[i][1] = lang_ids[i]
                else:
                    init_tokens[i].append(lang_ids[i])
        del languages

        # Update init_tokens with task
        for i in range(len(init_tokens)):
            if task is not None:
                if task in TASK_IDS:
                    init_tokens[i].append(generation_config.task_to_id[generation_config.task])
                    task_id = generation_config.task_to_id[generation_config.task]

                    # if task is defined it'll overwrite task ids that might have already been defined via the generation_config
                    replace_or_add(init_tokens[i], task_id, generation_config.task_to_id.values())
                else:
                    raise ValueError(f"The `{task}`task is not supported. The task should be one of `{TASK_IDS}`")
            elif language is not None and hasattr(generation_config, "task_to_id"):
                # if language is defined, but no task id is in `init_tokens`, default to transcribe
                if not any(ti in init_tokens[i] for ti in generation_config.task_to_id.values()):
                    init_tokens[i].append(generation_config.task_to_id["transcribe"])

            if (
                not generation_config.return_timestamps
                and hasattr(generation_config, "no_timestamps_token_id")
                and init_tokens[i][-1] != generation_config.no_timestamps_token_id
            ):
                init_tokens[i].append(generation_config.no_timestamps_token_id)
            elif (
                generation_config.return_timestamps and init_tokens[i][-1] == generation_config.no_timestamps_token_id
            ):
                logger.info(
                    "<|notimestamps|> prompt token is removed from generation_config since `return_timestamps` is set to `'True'`."
                )
                init_tokens[i] = init_tokens[i][:-1]

            # let's make sure we don't pass `None` tokens as prompt tokens
            init_tokens[i] = [t for t in init_tokens[i] if t is not None]

        return torch.as_tensor(init_tokens, dtype=torch.long, device=self.device).expand(batch_size, -1)

    def detect_language(
        self,
        input_features: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        encoder_outputs: Optional[Union[torch.FloatTensor, BaseModelOutput]] = None,
        generation_config: Optional[GenerationConfig] = None,
        num_segment_frames: int = 3000,
    ) -> torch.Tensor:
        """
        Detects language from log-mel input features or encoder_outputs

        Parameters:
            input_features (`torch.Tensor` of shape `(batch_size, feature_size, sequence_length)`, *optional*):
                Float values of log-mel features extracted from the raw speech waveform. The raw speech waveform can be obtained by
                loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
                the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
                [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
                tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] for details.
            encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
                Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
                `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
                hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
            generation_config (`~generation.GenerationConfig`, *optional*):
                The generation configuration to be used as base parametrization for the generation call. `**kwargs`
                passed to generate matching the attributes of `generation_config` will override them. If
                `generation_config` is not provided, the default will be used, which had the following loading
                priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
                configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
                default values, whose documentation should be checked to parameterize generation.
            num_segment_frames (`int`, *optional*, defaults to 3000):
                The number of log-mel frames the model expects

        Return:
            A `torch.LongTensor` representing the detected language ids.
        """
        if input_features is None and encoder_outputs is None:
            raise ValueError("You have to specify either `input_features` or `encoder_outputs`")
        elif input_features is not None and encoder_outputs is not None:
            raise ValueError("Make sure to specificy only one of `input_features` or `encoder_outputs` - not both!")
        elif input_features is not None:
            inputs = {"input_features": input_features[:, :, :num_segment_frames]}
            batch_size = input_features.shape[0]
        elif encoder_outputs is not None:
            inputs = {"encoder_outputs": encoder_outputs}
            batch_size = (
                encoder_outputs[0].shape[0] if isinstance(encoder_outputs, BaseModelOutput) else encoder_outputs[0]
            )
        if attention_mask is not None:
            inputs["attention_mask"] = attention_mask

        generation_config = generation_config or self.generation_config
        decoder_input_ids = (
            torch.ones((batch_size, 1), device=self.device, dtype=torch.long)
            * generation_config.decoder_start_token_id
        )

        with torch.no_grad():
            logits = self(**inputs, decoder_input_ids=decoder_input_ids).logits[:, -1]

        non_lang_mask = torch.ones_like(logits[0], dtype=torch.bool)
        non_lang_mask[list(generation_config.lang_to_id.values())] = False

        logits[:, non_lang_mask] = -np.inf

        lang_ids = logits.argmax(-1)

        return lang_ids

    @staticmethod
    def _check_decoder_input_ids(kwargs):
        decoder_input_ids = kwargs.get("decoder_input_ids", None)
        assistant_model = kwargs.get("assistant_model", None)
        if decoder_input_ids is not None and assistant_model is not None:
            raise ValueError(
                "Passing `decoder_input_ids` is deprecated. Consider passing `prompt_ids` instead.",
            )

    @staticmethod
    def _set_num_frames(return_token_timestamps, generation_config, kwargs):
        if return_token_timestamps:
            if getattr(generation_config, "task", None) == "translate":
                logger.warning("Token-level timestamps may not be reliable for task 'translate'.")
            if not hasattr(generation_config, "alignment_heads"):
                raise ValueError(
                    "Model generation config has no `alignment_heads`, token-level timestamps not available. "
                    "See https://gist.github.com/hollance/42e32852f24243b748ae6bc1f985b13a on how to add this property to the generation config."
                )
            generation_config.num_frames = kwargs.pop("num_frames", None)

    @staticmethod
    def _set_thresholds_and_condition(
        generation_config,
        logprob_threshold,
        compression_ratio_threshold,
        no_speech_threshold,
        condition_on_prev_tokens,
    ):
        generation_config.logprob_threshold = (
            logprob_threshold
            if logprob_threshold is not None
            else getattr(generation_config, "logprob_threshold", None)
        )
        generation_config.compression_ratio_threshold = (
            compression_ratio_threshold
            if compression_ratio_threshold is not None
            else getattr(generation_config, "compression_ratio_threshold", None)
        )
        generation_config.no_speech_threshold = (
            no_speech_threshold
            if no_speech_threshold is not None
            else getattr(generation_config, "no_speech_threshold", None)
        )
        generation_config.condition_on_prev_tokens = (
            condition_on_prev_tokens
            if condition_on_prev_tokens is not None
            else getattr(generation_config, "condition_on_prev_tokens", None)
        )

    @staticmethod
    def _set_prompt_condition_type(generation_config, prompt_condition_type):
        allowed_cond_types = ["first-segment", "all-segments"]

        # default to "first-segment"
        prompt_condition_type = prompt_condition_type or allowed_cond_types[0]

        if prompt_condition_type not in allowed_cond_types:
            raise ValueError(
                f"`prompt_condition_type={prompt_condition_type} does not exist. Make sure to set `prompt_condition_type` to one of {', '.join(allowed_cond_types)}"
            )

        if generation_config.condition_on_prev_tokens is not True and prompt_condition_type == "all-segments":
            raise ValueError(
                "Make sure to set `condition_on_prev_tokens=True` when setting `prompt_condition_type='all-segments'`."
            )

        generation_config.prompt_condition_type = prompt_condition_type

    @staticmethod
    def _set_condition_on_prev_tokens(condition_on_prev_tokens, generation_config):
        condition_on_prev_tokens = (
            condition_on_prev_tokens
            if condition_on_prev_tokens is not None
            else getattr(generation_config, "condition_on_prev_tokens", False)
        )
        generation_config.condition_on_prev_tokens = condition_on_prev_tokens

    @staticmethod
    def _retrieve_max_frames_and_seek(batch_size, attention_mask, total_input_frames, is_shortform):
        if batch_size > 1 and not is_shortform and attention_mask is None:
            raise ValueError(
                "When doing batched long-form audio transcription, make sure to pass an `attention_mask`. You can retrieve the `attention_mask` by doing `processor(audio, ..., return_attention_mask=True)` "
            )
        elif batch_size > 1 and not is_shortform:
            max_frames = attention_mask.sum(-1).cpu().to(torch.long)
            seek = torch.zeros((batch_size,), dtype=torch.long)
        else:
            max_frames = torch.ones((batch_size,), dtype=torch.long) * total_input_frames
            seek = torch.zeros((batch_size,), dtype=torch.long)

        return max_frames, seek

    def _retrieve_logit_processors(self, generation_config, logits_processor, begin_index, num_beams, device):
        if generation_config.return_timestamps is True:
            timestamp_processor = WhisperTimeStampLogitsProcessor(generation_config, begin_index=begin_index)
            logits_processor = (
                [timestamp_processor] if logits_processor is None else [timestamp_processor] + logits_processor
            )

        if generation_config.suppress_tokens is not None:
            suppress_tokens_processor = SuppressTokensLogitsProcessor(generation_config.suppress_tokens, device=device)
            logits_processor = (
                [suppress_tokens_processor]
                if logits_processor is None
                else [suppress_tokens_processor] + logits_processor
            )
            generation_config.suppress_tokens = None

        if generation_config.begin_suppress_tokens is not None:
            begin_suppress_processor = SuppressTokensAtBeginLogitsProcessor(
                generation_config.begin_suppress_tokens, begin_index=begin_index, device=device
            )
            logits_processor = (
                [begin_suppress_processor]
                if logits_processor is None
                else [begin_suppress_processor] + logits_processor
            )
            generation_config.begin_suppress_tokens = None

        if generation_config.no_speech_threshold is not None:
            no_speech_detector = WhisperNoSpeechDetection(
                no_speech_token=generation_config.no_timestamps_token_id - 1,
                begin_index=begin_index,
                scores_is_logprobs=num_beams > 1,
            )
            logits_processor = (
                [no_speech_detector] if logits_processor is None else [no_speech_detector] + logits_processor
            )
            no_speech_detector.set_model(self)

        return logits_processor

    @staticmethod
    def _maybe_reduce_batch(input_features, seek, max_frames, cur_bsz, batch_idx_map):
        prev_bsz = cur_bsz
        new_batch_idx_map = []
        for i in range(prev_bsz):
            prev_i = batch_idx_map[i]
            if seek[prev_i] >= max_frames[prev_i]:
                cut_index = i + (cur_bsz - prev_bsz)
                cur_bsz -= 1
                input_features = torch.cat([input_features[:cut_index], input_features[cut_index + 1 :]], dim=0)
            else:
                # cut out index that goes away
                new_batch_idx_map.append(prev_i)

        return input_features, cur_bsz, new_batch_idx_map

    @staticmethod
    def _get_input_segment(input_features, seek, seek_num_frames, num_segment_frames, cur_bsz, batch_idx_map):
        if input_features is None:
            return None

        segment_input = []
        for i in range(cur_bsz):
            prev_i = batch_idx_map[i]
            segment_input_slice = input_features[i : i + 1, :, seek[prev_i] : seek[prev_i] + seek_num_frames[prev_i]]

            if segment_input_slice.shape[-1] < num_segment_frames:
                # pad to 3000 if necessary
                segment_input_slice = F.pad(
                    segment_input_slice, pad=(0, num_segment_frames - segment_input_slice.shape[-1])
                )

            segment_input.append(segment_input_slice)

        segment_input = torch.cat(segment_input, dim=0)

        return segment_input

    @staticmethod
    def _prepare_decoder_input_ids(
        cur_bsz,
        init_tokens,
        current_segments,
        batch_idx_map,
        do_condition_on_prev_tokens,
        prompt_ids,
        generation_config,
        config,
        device,
        suppress_tokens,
        kwargs,
    ):
        if "decoder_input_ids" in kwargs:
            decoder_input_ids = kwargs.pop("decoder_input_ids")

            return decoder_input_ids, kwargs

        cut_off_length = config.max_target_positions // 2 - 1

        decoder_input_ids = init_tokens[batch_idx_map]

        prev_start_of_text = getattr(generation_config, "prev_sot_token_id", None)
        if prev_start_of_text is None:
            prev_start_of_text = suppress_tokens[-2] if suppress_tokens is not None else None

        if any(do_condition_on_prev_tokens) and len(current_segments[0]) > 0:
            # according to https://github.com/openai/whisper/blob/e58f28804528831904c3b6f2c0e473f346223433/whisper/decoding.py#L609
            active_segments = [current_segments[i] if do_condition_on_prev_tokens[i] else None for i in batch_idx_map]

            if prompt_ids is not None and generation_config.prompt_condition_type == "all-segments":
                prev_ids = prompt_ids
            else:
                one_tensor = torch.ones((cur_bsz, 1), device=device, dtype=torch.long)
                prev_ids = prev_start_of_text * one_tensor[0] if prev_start_of_text is not None else None

            padding = "max_length" if generation_config.cache_implementation == "static" else "longest"

            prev_tokens = _pad_to_max_length(
                active_segments,
                generation_config.pad_token_id,
                device=device,
                padding_side="left",
                padding=padding,
                bos_token_tensor=prev_ids,
                cut_off_length=cut_off_length,
            )
            decoder_input_ids = torch.cat([prev_tokens, decoder_input_ids], dim=-1)

            kwargs["decoder_attention_mask"] = decoder_input_ids != generation_config.pad_token_id
        elif prompt_ids is not None:
            prev_tokens = prompt_ids[None].repeat(decoder_input_ids.shape[0], 1)
            decoder_input_ids = torch.cat([prev_tokens, decoder_input_ids], dim=-1)
            # make sure `"decoder_attention_mask"` is not passed to forward
            kwargs.pop("decoder_attention_mask", None)
        else:
            # make sure `"decoder_attention_mask"` is not passed to forward
            kwargs.pop("decoder_attention_mask", None)

        return decoder_input_ids, kwargs

    def _set_max_new_tokens_and_length(self, config, decoder_input_ids, generation_config):
        max_new_tokens = generation_config.max_new_tokens if generation_config.max_new_tokens is not None else 0
        if max_new_tokens + decoder_input_ids.shape[-1] > self.config.max_target_positions:
            raise ValueError(
                f"The length of `decoder_input_ids` equal `prompt_ids` plus special start tokens is {decoder_input_ids.shape[-1]}, and the `max_new_tokens` "
                f"is {max_new_tokens}. Thus, the combined length of "
                f"`decoder_input_ids` and `max_new_tokens` is: {max_new_tokens + decoder_input_ids.shape[-1]}. This exceeds the "
                f"`max_target_positions` of the Whisper model: {self.config.max_target_positions}. "
                "You should either reduce the length of your prompt, or reduce the value of `max_new_tokens`, "
                f"so that their combined length is less than {self.config.max_target_positions}."
            )

        num_initial_tokens = min(config.max_target_positions // 2 - 1, decoder_input_ids.shape[-1] - 1)

        # Make sure we don't get larger than `max_length`
        if generation_config.max_length is not None and generation_config.max_new_tokens is None:
            max_length = min(generation_config.max_length + num_initial_tokens, config.max_target_positions)
            logger.info(
                f"Increase max_length from {generation_config.max_length} to {max_length} since input is conditioned on previous segment."
            )
        elif (
            generation_config.max_new_tokens is not None
            and generation_config.max_new_tokens + decoder_input_ids.shape[-1] > config.max_target_positions
        ):
            max_new_tokens = config.max_target_positions - decoder_input_ids.shape[-1]
            generation_config.max_new_tokens = max_new_tokens

    @staticmethod
    def _retrieve_compression_ratio(tokens, vocab_size):
        """Compute byte length of zlib compressed token bytes vs. byte length of raw token bytes"""
        length = int(math.log2(vocab_size) / 8) + 1
        token_bytes = b"".join([t.to_bytes(length, "little") for t in tokens.tolist()])
        compression_ratio = len(token_bytes) / len(zlib.compress(token_bytes))

        return compression_ratio

    @staticmethod
    def _retrieve_avg_logprobs(scores, tokens, eos_token_id, temperature):
        rescale_temperature = temperature if temperature > 0.0 else 1
        scores = torch.stack(scores).to(tokens.device)

        if scores.shape[0] > tokens.shape[0]:
            scores = scores[: tokens.shape[0]]
        else:
            tokens = tokens[-scores.shape[0] :]

        logprobs = F.log_softmax((scores * rescale_temperature).float(), dim=-1).to(scores.dtype)

        # retrieve logprob of selected tokens and sum
        sum_logprobs = sum((logprobs[i][tokens[i]] * (tokens[i] != eos_token_id)) for i in range(logprobs.shape[0]))
        length = (tokens != eos_token_id).sum(-1) if eos_token_id is not None else tokens.shape[0]

        avg_logprobs = sum_logprobs / (length + 1)
        return avg_logprobs

    @staticmethod
    def _retrieve_segment(
        seek_sequence,
        seek_outputs,
        time_offset,
        timestamp_begin,
        seek_num_frames,
        time_precision,
        input_stride,
        prev_idx,
        idx,
        return_token_timestamps,
    ):
        # find the predicted "end of segment" predictions of Whisper
        # "end of segment" predictions occur whenever Whisper predicts a timestamp token
        timestamp_tokens: torch.Tensor = seek_sequence.ge(timestamp_begin)
        single_timestamp_ending = timestamp_tokens[-2:].tolist() == [False, True]
        timestamp_segment_indices = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0]
        timestamp_segment_indices.add_(1)
        token_timestamps = seek_outputs[idx]["token_timestamps"] if return_token_timestamps else []

        # If whisper predicted a "end of segment" via a timestep token, let's go ever each
        # "end of segment" prediction and slice the decoding into segments accordingly
        if len(timestamp_segment_indices) > 0:
            # if the output contains two consecutive timestamp tokens
            slices = timestamp_segment_indices.tolist()
            segments = []
            if single_timestamp_ending:
                slices.append(len(seek_sequence))

            last_slice = 0
            # Add each segment to list of all segments
            for current_slice in slices:
                sliced_tokens = seek_sequence[last_slice:current_slice]
                start_timestamp_pos = sliced_tokens[0].item() - timestamp_begin
                end_timestamp_pos = sliced_tokens[-1].item() - timestamp_begin
                segments.append(
                    {
                        "start": time_offset[prev_idx] + start_timestamp_pos * time_precision,
                        "end": time_offset[prev_idx] + end_timestamp_pos * time_precision,
                        "tokens": sliced_tokens,
                        "result": seek_outputs[idx],
                    }
                )
                if return_token_timestamps:
                    segments[-1]["token_timestamps"] = (
                        token_timestamps[last_slice:current_slice] + time_offset[prev_idx]
                    )
                last_slice = current_slice

            if single_timestamp_ending:
                # single timestamp at the end means no speech after the last timestamp.
                segment_offset = seek_num_frames[prev_idx]
            else:
                # otherwise, ignore the unfinished segment and seek to the last timestamp
                # here we throw away all predictions after the last predicted "end of segment"
                # since we are cutting right in the middle of an audio
                last_timestamp_pos = seek_sequence[last_slice - 1].item() - timestamp_begin
                segment_offset = last_timestamp_pos * input_stride
        else:
            # If whisper does not predict any "end of segment" token, then
            # the whole decoding is considered a segment and we add it to the list of segments
            timestamps = seek_sequence[timestamp_tokens.nonzero().flatten()]
            last_timestamp_pos = seek_num_frames[prev_idx]
            if timestamps.numel() > 0 and timestamps[-1].item() != timestamp_begin:
                # no consecutive timestamps but it has a timestamp; use the last one.
                last_timestamp_pos = timestamps[-1].item() - timestamp_begin
            segments = [
                {
                    "start": time_offset[prev_idx],
                    "end": time_offset[prev_idx] + last_timestamp_pos * time_precision,
                    "tokens": seek_sequence,
                    "result": seek_outputs[idx],
                }
            ]
            if return_token_timestamps:
                segments[-1]["token_timestamps"] = token_timestamps + time_offset[prev_idx]
            segment_offset = seek_num_frames[prev_idx]

        return segments, segment_offset