|
import torch |
|
import torchaudio |
|
import numpy as np |
|
import re |
|
from hyperpyyaml import load_hyperpyyaml |
|
import uuid |
|
from collections import defaultdict |
|
|
|
|
|
def fade_in_out(fade_in_mel, fade_out_mel, window): |
|
device = fade_in_mel.device |
|
fade_in_mel, fade_out_mel = fade_in_mel.cpu(), fade_out_mel.cpu() |
|
mel_overlap_len = int(window.shape[0] / 2) |
|
fade_in_mel[..., :mel_overlap_len] = fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \ |
|
fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:] |
|
return fade_in_mel.to(device) |
|
|
|
|
|
class AudioDecoder: |
|
def __init__(self, config_path, flow_ckpt_path, hift_ckpt_path, device="cuda"): |
|
self.device = device |
|
|
|
with open(config_path, 'r') as f: |
|
self.scratch_configs = load_hyperpyyaml(f) |
|
|
|
|
|
self.flow = self.scratch_configs['flow'] |
|
self.flow.load_state_dict(torch.load(flow_ckpt_path, map_location=self.device)) |
|
self.hift = self.scratch_configs['hift'] |
|
self.hift.load_state_dict(torch.load(hift_ckpt_path, map_location=self.device)) |
|
|
|
|
|
self.flow.to(self.device) |
|
self.hift.to(self.device) |
|
self.mel_overlap_dict = defaultdict(lambda: None) |
|
self.hift_cache_dict = defaultdict(lambda: None) |
|
self.token_min_hop_len = 2 * self.flow.input_frame_rate |
|
self.token_max_hop_len = 4 * self.flow.input_frame_rate |
|
self.token_overlap_len = 5 |
|
self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256) |
|
self.mel_window = np.hamming(2 * self.mel_overlap_len) |
|
|
|
self.mel_cache_len = 1 |
|
self.source_cache_len = int(self.mel_cache_len * 256) |
|
|
|
self.speech_window = np.hamming(2 * self.source_cache_len) |
|
|
|
def token2wav(self, token, uuid, prompt_token=torch.zeros(1, 0, dtype=torch.int32), |
|
prompt_feat=torch.zeros(1, 0, 80), embedding=torch.zeros(1, 192), finalize=False): |
|
tts_mel = self.flow.inference(token=token.to(self.device), |
|
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device), |
|
prompt_token=prompt_token.to(self.device), |
|
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to( |
|
self.device), |
|
prompt_feat=prompt_feat.to(self.device), |
|
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to( |
|
self.device), |
|
embedding=embedding.to(self.device)) |
|
|
|
|
|
if self.mel_overlap_dict[uuid] is not None: |
|
tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window) |
|
|
|
if self.hift_cache_dict[uuid] is not None: |
|
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source'] |
|
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2) |
|
|
|
else: |
|
hift_cache_source = torch.zeros(1, 1, 0) |
|
|
|
|
|
if finalize is False: |
|
self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:] |
|
tts_mel = tts_mel[:, :, :-self.mel_overlap_len] |
|
tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source) |
|
|
|
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:], |
|
'source': tts_source[:, :, -self.source_cache_len:], |
|
'speech': tts_speech[:, -self.source_cache_len:]} |
|
|
|
|
|
tts_speech = tts_speech[:, :-self.source_cache_len] |
|
|
|
else: |
|
tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source) |
|
del self.hift_cache_dict[uuid] |
|
del self.mel_overlap_dict[uuid] |
|
|
|
|
|
return tts_speech, tts_mel |
|
|
|
def offline_inference(self, token): |
|
this_uuid = str(uuid.uuid1()) |
|
tts_speech, tts_mel = self.token2wav(token, uuid=this_uuid, finalize=True) |
|
return tts_speech.cpu() |
|
|
|
def stream_inference(self, token): |
|
token.to(self.device) |
|
this_uuid = str(uuid.uuid1()) |
|
|
|
|
|
llm_embedding = torch.zeros(1, 192).to(self.device) |
|
prompt_speech_feat = torch.zeros(1, 0, 80).to(self.device) |
|
flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int32).to(self.device) |
|
|
|
tts_speechs = [] |
|
tts_mels = [] |
|
|
|
block_size = self.flow.encoder.block_size |
|
prev_mel = None |
|
|
|
for idx in range(0, token.size(1), block_size): |
|
|
|
tts_token = token[:, idx:idx + block_size] |
|
|
|
print(tts_token.size()) |
|
|
|
if prev_mel is not None: |
|
prompt_speech_feat = torch.cat(tts_mels, dim=-1).transpose(1, 2) |
|
flow_prompt_speech_token = token[:, :idx] |
|
|
|
if idx + block_size >= token.size(-1): |
|
is_finalize = True |
|
else: |
|
is_finalize = False |
|
|
|
tts_speech, tts_mel = self.token2wav(tts_token, uuid=this_uuid, |
|
prompt_token=flow_prompt_speech_token.to(self.device), |
|
prompt_feat=prompt_speech_feat.to(self.device), finalize=is_finalize) |
|
|
|
prev_mel = tts_mel |
|
prev_speech = tts_speech |
|
print(tts_mel.size()) |
|
|
|
tts_speechs.append(tts_speech) |
|
tts_mels.append(tts_mel) |
|
|
|
|
|
tts_speech = torch.cat(tts_speechs, dim=-1).cpu() |
|
|
|
return tts_speech.cpu() |
|
|
|
|