ppo-LunarLander-v2 / config.json
cys's picture
Upload PPO LunarLander-v2 trained agent
6aa29a3
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bc6ea822710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bc6ea8227a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bc6ea822830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bc6ea8228c0>", "_build": "<function ActorCriticPolicy._build at 0x7bc6ea822950>", "forward": "<function ActorCriticPolicy.forward at 0x7bc6ea8229e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bc6ea822a70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bc6ea822b00>", "_predict": "<function ActorCriticPolicy._predict at 0x7bc6ea822b90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bc6ea822c20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bc6ea822cb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bc6ea822d40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bc6ea7c3140>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697337186592913875, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMWwzwphGW6ECqMPFsnubXjyoI7a4qqtAAAgD8AAIA/mljQvFzXf7qWhZ07Tb37NSzfBbujzre6AACAPwAAgD9mDHy9KVglukpxprvJmoO2RH4MulCxtzoAAIA/AACAP0Ccx70p4Gy6hNSnuyJCK7bS25S67qvEOgAAgD8AAAAAM+NNPeFGibqo1lm39+xLsg42Czs1G302AACAPwAAgD9mdZy9UqDKucijeLuAYE42rSzQurDgkDoAAIA/AACAP12Jbb7ADwI/CpNSPhxvib4eVOi9RwW7PQAAAAAAAAAAzWwGulLwqrnq4e66llsntkAlxTs64ww6AACAPwAAgD8A1Z+8cZ0DueX11bgXv7qzhRsdO1oM/DcAAIA/AACAPzOH9LyuxYe6Tkq3uYA64bWzPgg6fS7TOAAAgD8AAIA/7RIHPkhDtroT9g089Y7HuDgHQzrIUem5AACAPwAAgD+a7ga99kRDujYo1DrE4qc1oefGOhjJ+rkAAIA/AACAP2ZqPjz4mJg/+e6RvMk33b4sLZu8YuE8PAAAAAAAAAAADeoivribcD8+ePC9kN6yvsJBXb44SU89AAAAAAAAAAAaAlK9KXAxumlsNLrvS/20a2w6uWDJUzkAAIA/AACAP5qrxj1Io5u6RbroOhF7+zSOhpS6BlQFugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGcCOIhyKemMAWyUTegDjAF0lEdAlYsqFAVwgnV9lChoBkdAOpQSrYGt62gHS9FoCEdAlYxDOkcjq3V9lChoBkdAZ7o8W9DhL2gHTegDaAhHQJWMfnyNGVl1fZQoaAZHQGMP9rftQbdoB03oA2gIR0CVjL7HyVfNdX2UKGgGR0BGClMRHww1aAdL52gIR0CVjwinHeabdX2UKGgGR0Bh1crwvxpdaAdN6ANoCEdAlZCK8Hv+fnV9lChoBkdAZvAKsMiKSGgHTegDaAhHQJWTaF49ovl1fZQoaAZHQGJtoJRfnfVoB03oA2gIR0CVlVFbFCLNdX2UKGgGR0BCvqp97WupaAdLxGgIR0CVmYGjbi6ydX2UKGgGR0BjE5QWN3nqaAdN6ANoCEdAla7JDRc/uHV9lChoBkdAVL1FF2FFlWgHS8poCEdAla8fgvUSZnV9lChoBkdAZYl/4qPOp2gHTegDaAhHQJWwziuMdcV1fZQoaAZHQGh7/CQ9zOpoB03oA2gIR0CVtuiBGx2TdX2UKGgGR0Bi6+6unuRcaAdN6ANoCEdAlcesTWXkYHV9lChoBkdAaCQcNpdrwmgHTegDaAhHQJXJ2Zc9nsd1fZQoaAZHQGNjQSzw+dNoB03oA2gIR0CV0z5AQg9vdX2UKGgGR0Bh8LH6uW8iaAdN6ANoCEdAldPjgydnTXV9lChoBkdAZf2AS39aU2gHTegDaAhHQJXW45MlC1J1fZQoaAZHQGOz2gnMMZxoB03oA2gIR0CV2MtCRfWudX2UKGgGR0BhhMzqKP4maAdN6ANoCEdAldoaGlANX3V9lChoBkdAZLfIQvpQlGgHTegDaAhHQJXaXpD/lyR1fZQoaAZHQGUlPvBrN4ZoB03oA2gIR0CV2qfQa72+dX2UKGgGR0BhScQwsXizaAdN6ANoCEdAld05rDZUUHV9lChoBkdAYWnN7BwdbWgHTegDaAhHQJXlH9/BnBd1fZQoaAZHQGVXCEpRXOpoB03oA2gIR0CV7Tt+TeO5dX2UKGgGR0BnUDyQPqcFaAdN6ANoCEdAlgRlGkN4JXV9lChoBkdAZKl+ee4Cp2gHTegDaAhHQJYEqjdpItl1fZQoaAZHQF3H9oN/e+FoB03oA2gIR0CWBg3QUpNLdX2UKGgGR0BihutlqagFaAdN6ANoCEdAlgrNZV4oqnV9lChoBkdASg32/SH/LmgHS8poCEdAlgzfVd5Y5nV9lChoBkdATcF/x2B8QmgHTQIBaAhHQJYUlJRO1v51fZQoaAZHQGeYEvboKUpoB03oA2gIR0CWGf8dPtUodX2UKGgGR0BlBfsgMc6vaAdN6ANoCEdAlhwdfLLZBnV9lChoBkdAYFIRvFWGRGgHTegDaAhHQJYn41n/T9d1fZQoaAZHQGPLfe1rqMZoB03oA2gIR0CWKMomG/N8dX2UKGgGR0BgyI66reZYaAdN6ANoCEdAli0oKQaJh3V9lChoBkdAZMTlnRLK3mgHTegDaAhHQJYwH6WPcSJ1fZQoaAZHQGanSNfgJkZoB03oA2gIR0CWMdkOZssQdX2UKGgGR0BjxJUaQ3glaAdN6ANoCEdAljIgGnn+ynV9lChoBkdAZIhc5bQkX2gHTegDaAhHQJYyay/sVtZ1fZQoaAZHQGR4cj7hvR9oB03oA2gIR0CWNVJaq0dBdX2UKGgGR0BmVokzGgjAaAdN6ANoCEdAlj0J9JBgNXV9lChoBkdAVFXjo6jnFGgHS75oCEdAlj/Msg+yJXV9lChoBkdAZTPsANoak2gHTegDaAhHQJZHeU/wAlx1fZQoaAZHQGO/GbCrLhdoB03oA2gIR0CWWJpudf9hdX2UKGgGR0BER2O6unuRaAdL/GgIR0CWXgw3YL9ddX2UKGgGR0Bk6oS13MY/aAdN6ANoCEdAll5lz+3pfXV9lChoBkdAZjVRmbsniWgHTegDaAhHQJZhSw7kn1F1fZQoaAZHQGSjHfVI7NloB03oA2gIR0CWbJPnjhkzdX2UKGgGR0Bl6EDr7fpEaAdN6ANoCEdAlnFfRJEpiXV9lChoBkdAREMriEQGwGgHS+RoCEdAlnKbT6SDAnV9lChoBkdAZGXuIhyKemgHTegDaAhHQJZzVul41P51fZQoaAZHQGAtmf5DZ15oB03oA2gIR0CWezTV2A5JdX2UKGgGR0BnEH2ys0YTaAdN6ANoCEdAlnvBx1gYxnV9lChoBkdAZb5kOI68x2gHTegDaAhHQJZ+hfMOf/Z1fZQoaAZHQGP5ZBLPD51oB03oA2gIR0CWgEstkFwDdX2UKGgGR0BP2IRqXWvsaAdL72gIR0CWgJ2gnMMadX2UKGgGR0BjnOsV+I/JaAdN6ANoCEdAloF9CRfWtnV9lChoBkdAZtwwwj+rEWgHTegDaAhHQJaBuQ1aW5Z1fZQoaAZHQGJZ7349HMFoB03oA2gIR0CWggX7cfvGdX2UKGgGR0Bko5Zr56+naAdN6ANoCEdAlo4aews5GXV9lChoBkdAZqHcTJyQxWgHTegDaAhHQJaWCtSydFx1fZQoaAZHQGl7SeAd4mloB03oA2gIR0CWl/RKpT/AdX2UKGgGR0BK8ebutwJgaAdLy2gIR0CWsP1uBMBZdX2UKGgGR0BeTjHKfWc0aAdN6ANoCEdAlrEyN83Mp3V9lChoBkdAY/PZIxxku2gHTegDaAhHQJaxdOZb6gx1fZQoaAZHQGauF2NedCpoB03oA2gIR0CWu4a3I+4cdX2UKGgGR0A1uWX1J17qaAdL0WgIR0CWvjF3pwCKdX2UKGgGR0Blg8gwGnn/aAdN6ANoCEdAlsDJxm03O3V9lChoBkdAZ4pw3o9s8GgHTegDaAhHQJbCAXAM2FZ1fZQoaAZHQGFeEz41xbVoB03oA2gIR0CWywta6jFidX2UKGgGR0BncfLgXMyKaAdN6ANoCEdAlsufMbFS9HV9lChoBkdAYxbpZfUnX2gHTegDaAhHQJbOmxQizLR1fZQoaAZHQGMKBWgezUtoB03oA2gIR0CW0UV0tAcDdX2UKGgGR0Bfd/4EfT1DaAdN6ANoCEdAltG87QswtnV9lChoBkdAXJ0Djin5z2gHTegDaAhHQJbS/ssxwhp1fZQoaAZHQGTTTDO1OTJoB03oA2gIR0CW01scABDHdX2UKGgGR0BkBNF2FFlTaAdN6ANoCEdAltO1TR6WxHV9lChoBkdAZIX/ZuhsZmgHTegDaAhHQJbsPJMg2ZR1fZQoaAZHQGLzSeZof0VoB03oA2gIR0CW7ZEk0JnhdX2UKGgGR0BmrKBbwBo3aAdN6ANoCEdAlwGJE6T4cnV9lChoBkdAYNy1c+qzaGgHTegDaAhHQJcByQgcLjR1fZQoaAZHQEmFw4KhL5BoB0vlaAhHQJcJfutwJgN1fZQoaAZHQF3F/iYLLIRoB03oA2gIR0CXC1aLXL/0dX2UKGgGR0BjnAe9zwMIaAdN6ANoCEdAlw6uaWom5XV9lChoBkdAZ1Ph1klNUWgHTegDaAhHQJcR6uwHJLd1fZQoaAZHQGF/Of29L6FoB03oA2gIR0CXE3uX/o7ndX2UKGgGR0BSpn5FgDzRaAdL02gIR0CXHEyAxzq9dX2UKGgGR0Bgg7dWQwK0aAdN6ANoCEdAlx8jPnjhk3V9lChoBkdAZSBnnMdLhGgHTegDaAhHQJcfu07bL2Z1fZQoaAZHQGBHBky1uzhoB03oA2gIR0CXIp5f+jubdX2UKGgGR0Bl6Sol2NedaAdN6ANoCEdAlyRfYjB2wHV9lChoBkdAZZCQvpQk5mgHTegDaAhHQJcktpKzzEt1fZQoaAZHQGB4N78ejmFoB03oA2gIR0CXJX7SRbKSdX2UKGgGR0BkLrfgrH2iaAdN6ANoCEdAlyW2GM4tH3V9lChoBkdAYcD79AHE/GgHTegDaAhHQJcl9mnO0LN1fZQoaAZHQFKSlxOtW+5oB0vRaAhHQJct7hWHUMJ1fZQoaAZHQG3hRmbsniNoB03nAmgIR0CXN9FyaNModX2UKGgGR0Blxh9d/rjYaAdN6ANoCEdAlzsWfbsWwnV9lChoBkdAUjhYEGJN02gHS9doCEdAlzuCNbTts3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}